BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 9480903)

  • 1. Chromatin remodelling of the cardiac beta-myosin heavy chain gene.
    Huang WY; Liew CC
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):871-6. PubMed ID: 9480903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple muscle-specific regulatory elements are associated with a DNase I hypersensitive site of the cardiac beta-myosin heavy-chain gene.
    Huang WY; Chen JJ; Shih N; Liew CC
    Biochem J; 1997 Oct; 327 ( Pt 2)(Pt 2):507-12. PubMed ID: 9359423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved GATA motif in a tissue-specific DNase I hypersensitive site of the cardiac alpha-myosin heavy chain gene.
    Huang WY; Liew CC
    Biochem J; 1997 Jul; 325 ( Pt 1)(Pt 1):47-51. PubMed ID: 9224628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural analysis of mouse rDNA: coincidence between nuclease hypersensitive sites, DNA curvature and regulatory elements in the intergenic spacer.
    Längst G; Schätz T; Langowski J; Grummt I
    Nucleic Acids Res; 1997 Feb; 25(3):511-7. PubMed ID: 9016589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The chromatin structure of the human epsilon globin gene: nuclease hypersensitive sites correlate with multiple initiation sites of transcription.
    Zhu J; Allan M; Paul J
    Nucleic Acids Res; 1984 Dec; 12(23):9191-204. PubMed ID: 6096822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nutritional regulation of nucleosomal structure at the chicken malic enzyme promoter in liver.
    Ma XJ; Goodridge AG
    Nucleic Acids Res; 1992 Oct; 20(19):4997-5002. PubMed ID: 1408817
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNase I and micrococcal nuclease analysis of the tomato proteinase inhibitor I gene in chromatin.
    Conconi A; Ryan CA
    J Biol Chem; 1993 Jan; 268(1):430-5. PubMed ID: 8416948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Structural and functional chromatin organization of the SUP35 gene in Saccharomyces cerevisiae yeast].
    Riabinkova NA; Vodop'ianova LG; Samsonova MG; Miasikova EM; Osipova TN
    Genetika; 1997 Apr; 33(4):451-7. PubMed ID: 9206662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nuclease sensitivity and functional analysis of a maize histone H3 gene promoter.
    Brignon P; Lepetit M; Gigot C; Chaubet N
    Plant Mol Biol; 1993 Sep; 22(6):1007-15. PubMed ID: 8400121
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleosomes are translationally positioned on the active allele and rotationally positioned on the inactive allele of the HPRT promoter.
    Chen C; Yang TP
    Mol Cell Biol; 2001 Nov; 21(22):7682-95. PubMed ID: 11604504
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucocorticoids locally disrupt an array of positioned nucleosomes on the rat tyrosine aminotransferase promoter in hepatoma cells.
    Carr KD; Richard-Foy H
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9300-4. PubMed ID: 1979170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A close association between sites of DNase I hypersensitivity and sites of enhanced cleavage by micrococcal nuclease in the 5'-flanking region of the actively transcribed ovalbumin gene.
    Kaye JS; Bellard M; Dretzen G; Bellard F; Chambon P
    EMBO J; 1984 May; 3(5):1137-44. PubMed ID: 6329739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromatin structure of the chicken beta-globin gene region. Sensitivity to DNase I, micrococcal nuclease, and DNase II.
    Wood WI; Felsenfeld G
    J Biol Chem; 1982 Jul; 257(13):7730-6. PubMed ID: 6282852
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Promoter regions of four Balbiani ring genes in Chironomus tentans exhibit a common salivary gland-specific chromatin organisation, which is independent of the rate of transcriptional initiation.
    Belikov S; Paulsson G; Wieslander L
    Mol Gen Genet; 1998 May; 258(4):420-6. PubMed ID: 9648748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific and periodic changes in the nuclease sensitivity of the fibroin gene chromatin in the silkworm Bombyx mori.
    Kondo K; Aoshima Y; Hagiwara T; Ueda H; Mizuno S
    J Biol Chem; 1987 Apr; 262(11):5271-9. PubMed ID: 3031047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of chromatin structure in vivo.
    Mymryk JS; Fryer CJ; Jung LA; Archer TK
    Methods; 1997 May; 12(1):105-14. PubMed ID: 9169200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximal and long-range alterations in chromatin structure surrounding the Chinese hamster dihydrofolate reductase promoter.
    Pemov A; Bavykin S; Hamlin JL
    Biochemistry; 1995 Feb; 34(7):2381-92. PubMed ID: 7857948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinoid receptor-induced alteration of the chromatin assembled on a ligand-responsive promoter in Xenopus oocytes.
    Minucci S; Wong J; Blanco JC; Shi YB; Wolffe AP; Ozato K
    Mol Endocrinol; 1998 Mar; 12(3):315-24. PubMed ID: 9514149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromatin structure of the developmentally regulated early histone genes of the sea urchin Strongylocentrotus purpuratus.
    Fronk J; Tank GA; Langmore JP
    Nucleic Acids Res; 1990 Sep; 18(17):5255-63. PubMed ID: 2402446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DNase I- and micrococcal nuclease-hypersensitive sites in the human apolipoprotein B gene are tissue specific.
    Levy-Wilson B; Fortier C; Blackhart BD; McCarthy BJ
    Mol Cell Biol; 1988 Jan; 8(1):71-80. PubMed ID: 3336367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.