These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 9480905)
1. Enzymic formation of riboflavin 4',5'-cyclic phosphate from FAD: evidence for a specific low-Km FMN cyclase in rat liver1. Fraiz FJ; Pinto RM; Costas MJ; Aavalos M; Canales J; Cabezas A; Cameselle JC Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):881-8. PubMed ID: 9480905 [TBL] [Abstract][Full Text] [Related]
2. Purification, characterization, and substrate and inhibitor structure-activity studies of rat liver FAD-AMP lyase (cyclizing): preference for FAD and specificity for splitting ribonucleoside diphosphate-X into ribonucleotide and a five-atom cyclic phosphodiester of X, either a monocyclic compound or a cis-bicyclic phosphodiester-pyranose fusion. Cabezas A; Pinto RM; Fraiz F; Canales J; González-Santiago S; Cameselle JC Biochemistry; 2001 Nov; 40(45):13710-22. PubMed ID: 11695920 [TBL] [Abstract][Full Text] [Related]
3. Preparation of riboflavin 4',5'-cyclic phosphate by incubation of flavin-adenine dinucleotide with Mn2+ in the absence of riboflavin 5'-phosphate cyclase. Pinto RM; Fraiz FJ; Cabezas A; Avalos M; Canales J; Costas MJ; Cameselle JC Anal Biochem; 1999 Mar; 268(2):409-11. PubMed ID: 10075835 [No Abstract] [Full Text] [Related]
4. Fluorimetric HPLC detection of endogenous riboflavin 4',5'-cyclic phosphate in rat liver at nanomolar concentrations. Canales J; Cabezas A; Pinto RM; Cameselle JC Anal Biochem; 2005 Jun; 341(2):214-9. PubMed ID: 15907866 [TBL] [Abstract][Full Text] [Related]
5. Flavin adenine dinucleotide and flavin mononucleotide metabolism in rat liver--the occurrence of FAD pyrophosphatase and FMN phosphohydrolase in isolated mitochondria. Barile M; Brizio C; De Virgilio C; Delfine S; Quagliariello E; Passarella S Eur J Biochem; 1997 Nov; 249(3):777-85. PubMed ID: 9395326 [TBL] [Abstract][Full Text] [Related]
6. Evidence for the presence of a FAD pyrophosphatase and a FMN phosphohydrolase in yeast mitochondria: a possible role in flavin homeostasis. Pallotta ML Yeast; 2011 Oct; 28(10):693-705. PubMed ID: 21915900 [TBL] [Abstract][Full Text] [Related]
7. Flavin levels in the rat retina. Batey DW; Daneshgar KK; Eckhert CD Exp Eye Res; 1992 Apr; 54(4):605-9. PubMed ID: 1623945 [TBL] [Abstract][Full Text] [Related]
8. A bifunctional molecule as an artificial flavin mononucleotide cyclase and a chemosensor for selective fluorescent detection of flavins. Rhee HW; Choi SJ; Yoo SH; Jang YO; Park HH; Pinto RM; Cameselle JC; Sandoval FJ; Roje S; Han K; Chung DS; Suh J; Hong JI J Am Chem Soc; 2009 Jul; 131(29):10107-12. PubMed ID: 19569646 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of injected flavins studied by using double-labeled [14C]flavin adenine dinucleotide and [14C, 32P]flavin mononucleotide. Okuda J; Nagamine J; Okumura M; Yagi K J Nutr Sci Vitaminol (Tokyo); 1978; 24(5):505-10. PubMed ID: 731334 [TBL] [Abstract][Full Text] [Related]
10. Identification of human and rat FAD-AMP lyase (cyclic FMN forming) as ATP-dependent dihydroxyacetone kinases. Cabezas A; Costas MJ; Pinto RM; Couto A; Cameselle JC Biochem Biophys Res Commun; 2005 Dec; 338(4):1682-9. PubMed ID: 16289032 [TBL] [Abstract][Full Text] [Related]
11. Mechanisms underlying the differential effects of ethanol on the bioavailability of riboflavin and flavin adenine dinucleotide. Pinto J; Huang YP; Rivlin RS J Clin Invest; 1987 May; 79(5):1343-8. PubMed ID: 3033022 [TBL] [Abstract][Full Text] [Related]
12. Enzymic basis of deranged foetal flavin-nucleotide metabolism consequent on immunoneutralization of maternal riboflavin carrier protein in the pregnant rat. Surolia N; Krishnamurthy K; Adiga PR Biochem J; 1985 Sep; 230(2):363-7. PubMed ID: 2996499 [TBL] [Abstract][Full Text] [Related]
13. FMN phosphatase and FAD pyrophosphatase in rat intestinal brush borders: role in intestinal absorption of dietary riboflavin. Akiyama T; Selhub J; Rosenberg IH J Nutr; 1982 Feb; 112(2):263-8. PubMed ID: 6120218 [TBL] [Abstract][Full Text] [Related]
14. Thyroid hormone regulation of flavocoenzyme biosynthesis. Lee SS; McCormick DB Arch Biochem Biophys; 1985 Feb; 237(1):197-201. PubMed ID: 2982328 [TBL] [Abstract][Full Text] [Related]
15. Hydrolysis of FMN and FAD by alkaline phosphatase of the intestinal brush-border membrane. Daniel H; Binninger E; Rehner G Int J Vitam Nutr Res; 1983; 53(1):109-14. PubMed ID: 6853053 [TBL] [Abstract][Full Text] [Related]
16. A rat liver lysosomal membrane flavin-adenine dinucleotide phosphohydrolase: purification and characterization. Shin HJ; Mego JL Arch Biochem Biophys; 1988 Nov; 267(1):95-103. PubMed ID: 2848456 [TBL] [Abstract][Full Text] [Related]
18. An essential role for UshA in processing of extracellular flavin electron shuttles by Shewanella oneidensis. Covington ED; Gelbmann CB; Kotloski NJ; Gralnick JA Mol Microbiol; 2010 Oct; 78(2):519-32. PubMed ID: 20807196 [TBL] [Abstract][Full Text] [Related]
19. Riboflavin phosphorylation is the crucial event in riboflavin transport by isolated rat enterocytes. Gastaldi G; Ferrari G; Verri A; Casirola D; Orsenigo MN; Laforenza U J Nutr; 2000 Oct; 130(10):2556-61. PubMed ID: 11015489 [TBL] [Abstract][Full Text] [Related]
20. [Changes in the content of riboflavin and its coenzyme in tissues during the aging of rats]. Leclerc J; Miller ML Ann Nutr Metab; 1981; 25(1):20-6. PubMed ID: 7259107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]