These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9482183)

  • 1. Posture-related overdrainage: comparison of the performance of 10 hydrocephalus shunts in vitro.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 1998 Feb; 42(2):327-33; discussion 333-4. PubMed ID: 9482183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laboratory testing of hydrocephalus shunts -- conclusion of the U.K. Shunt evaluation programme.
    Czosnyka Z; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir (Wien); 2002 Jun; 144(6):525-38; discussion 538. PubMed ID: 12111485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrodynamic properties of hydrocephalus shunts.
    Czosnyka Z; Czosnyka M; Richards H; Pickard JD
    Acta Neurochir Suppl; 1998; 71():334-9. PubMed ID: 9779223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overdrainage and shunt technology. A critical comparison of programmable, hydrostatic and variable-resistance valves and flow-reducing devices.
    Aschoff A; Kremer P; Benesch C; Fruh K; Klank A; Kunze S
    Childs Nerv Syst; 1995 Apr; 11(4):193-202. PubMed ID: 7621479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shunt testing in-vivo: a method based on the data from the UK shunt evaluation laboratory.
    Czosnyka ZH; Czosnyka M; Pickard JD
    Acta Neurochir Suppl; 2002; 81():27-30. PubMed ID: 12168323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of anti-siphon devices-how do they affect CSF dynamics in supine and upright posture?
    Gehlen M; Eklund A; Kurtcuoglu V; Malm J; Schmid Daners M
    Acta Neurochir (Wien); 2017 Aug; 159(8):1389-1397. PubMed ID: 28660395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrodynamic properties of hydrocephalus shunts: United Kingdom Shunt Evaluation Laboratory.
    Czosnyka M; Czosnyka Z; Whitehouse H; Pickard JD
    J Neurol Neurosurg Psychiatry; 1997 Jan; 62(1):43-50. PubMed ID: 9010399
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrocephalus shunt technology: 20 years of experience from the Cambridge Shunt Evaluation Laboratory.
    Chari A; Czosnyka M; Richards HK; Pickard JD; Czosnyka ZH
    J Neurosurg; 2014 Mar; 120(3):697-707. PubMed ID: 24405071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Posture related in-vitro characterization of a flow regulated MEMS CSF valve.
    Tachatos N; Chappel E; Dumont-Fillon D; Meboldt M; Daners MS
    Biomed Microdevices; 2020 Feb; 22(1):21. PubMed ID: 32088807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shunt assistant valve: bench test investigations and clinical performance.
    Tokoro K; Suzuki S; Chiba Y; Tsuda M
    Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus.
    Drake JM; Kestle JR; Milner R; Cinalli G; Boop F; Piatt J; Haines S; Schiff SJ; Cochrane DD; Steinbok P; MacNeil N
    Neurosurgery; 1998 Aug; 43(2):294-303; discussion 303-5. PubMed ID: 9696082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical evaluation of shunt implantations using Sophy programmable pressure valves: comparison with Codman-Hakim programmable valves.
    Katano H; Karasawa K; Sugiyama N; Yamashita N; Ohkura A; Kamiya K
    J Clin Neurosci; 2003 Sep; 10(5):557-61. PubMed ID: 12948459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Delta Valve: a physiologic shunt system.
    Watson DA
    Childs Nerv Syst; 1994 May; 10(4):224-30. PubMed ID: 7923231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Who Needs a Revision? 20 Years of Cambridge Shunt Lab.
    Czosnyka Z; Czosnyka M; Pickard JD; Chari A
    Acta Neurochir Suppl; 2016; 122():347-51. PubMed ID: 27165934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of antisiphon devices on ventriculoperitoneal shunt drainage dynamics in growing children.
    Tachatos N; Fernandes Dias S; Jehli E; Lübben D; Schuhmann MU; Schmid Daners M
    J Neurosurg Pediatr; 2023 Jul; 32(1):50-59. PubMed ID: 37119102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid flow performance of a new siphon-control device for ventricular shunts.
    Horton D; Pollay M
    J Neurosurg; 1990 Jun; 72(6):926-32. PubMed ID: 2338577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ventriculoperitoneal Shunt Drainage Increases With Gravity and Cerebrospinal Fluid Pressure Pulsations: Benchtop Model.
    Koueik J; Iskandar BJ; Yang Z; Kraemer MR; Armstrong S; Wakim V; Broman AT; Medow J; Luzzio C; Hsu DA
    Neurosurgery; 2021 Nov; 89(6):1141-1147. PubMed ID: 34528096
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationale and methodology of the multicenter pediatric cerebrospinal fluid shunt design trial. Pediatric Hydrocephalus Treatment Evaluation Group.
    Drake JM; Kestle J
    Childs Nerv Syst; 1996 Aug; 12(8):434-47. PubMed ID: 8891361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The delta valve: how does its clinical performance compare with two other pressure differential valves without antisiphon control?
    Davis SE; Levy ML; McComb JG; Sposto R
    Pediatr Neurosurg; 2000 Aug; 33(2):58-63. PubMed ID: 11070430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcutaneous pressure-adjustable valves and magnetic resonance imaging: an ex vivo examination of the Codman-Medos programmable valve and the Sophy adjustable pressure valve.
    Ortler M; Kostron H; Felber S
    Neurosurgery; 1997 May; 40(5):1050-7; discussion 1057-8. PubMed ID: 9149264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.