These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 9482183)

  • 21. Evaluation of three new models of hydrocephalus shunts.
    Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Acta Neurochir Suppl; 2005; 95():223-7. PubMed ID: 16463854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro performance of six combinations of adjustable differential pressure valves and fixed anti-siphon devices with and without vertical motion.
    Fiss I; Röhrig P; Hore N; von der Brelie C; Bettag C; Freimann FB; Thomale UW; Rohde V; Brandner S
    Acta Neurochir (Wien); 2020 Oct; 162(10):2421-2430. PubMed ID: 32779025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vitro performance of the fixed and adjustable gravity-assisted unit with and without motion-evidence of motion-induced flow.
    Kimura T; Schulz M; Shimoji K; Miyajima M; Arai H; Thomale UW
    Acta Neurochir (Wien); 2016 Oct; 158(10):2011-8. PubMed ID: 27553048
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual-switch valve: clinical performance of a new hydrocephalus valve.
    Trost HA; Sprung C; Lanksch W; Stolke D; Miethke C
    Acta Neurochir Suppl; 1998; 71():360-3. PubMed ID: 9779230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Shunting with gravitational valves--can adjustments end the era of revisions for overdrainage-related events?: clinical article.
    Freimann FB; Sprung C
    J Neurosurg; 2012 Dec; 117(6):1197-204. PubMed ID: 22998061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Importance of anti-siphon devices in the treatment of pediatric hydrocephalus.
    Tokoro K; Chiba Y; Abe H; Tanaka N; Yamataki A; Kanno H
    Childs Nerv Syst; 1994 May; 10(4):236-8. PubMed ID: 7923233
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Comparison of programmable shunt valves vs standard valves for communicating hydrocephalus of adults: a retrospective analysis of 407 patients.
    Ringel F; Schramm J; Meyer B
    Surg Neurol; 2005 Jan; 63(1):36-41; discussion 41. PubMed ID: 15639519
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison Between Flow-Regulated and Gravitational Shunt Valves in the Treatment of Normal Pressure Hydrocephalus: Flow-Grav Study.
    Scheffler P; Oertel MF; Stieglitz LH
    Neurosurgery; 2021 Aug; 89(3):413-419. PubMed ID: 34131760
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In vitro performance of combinations of anti-siphon devices with differential pressure valves in relation to the spatial position.
    Fiss I; Vanderheyden M; von der Brelie C; Bettag C; Hore N; Freimann F; Thomale UW; Rohde V; Brandner S
    Acta Neurochir (Wien); 2020 May; 162(5):1033-1040. PubMed ID: 31997071
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adjustable antisiphon shunt.
    Sood S; Canady AI; Ham SD
    Childs Nerv Syst; 1999 May; 15(5):246-9. PubMed ID: 10392496
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Clinical experience with various shunt systems in normal pressure hydrocephalus].
    Meier U; Zeilinger FS; Reyer T; Kintzel D
    Zentralbl Neurochir; 2000; 61(3):143-9. PubMed ID: 11189885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experiences with flow-regulated shunts (Orbis-Sigma valves) in cases of difficulty in managing hydrocephalus in children.
    Serlo W
    Childs Nerv Syst; 1995 Mar; 11(3):166-9. PubMed ID: 7773977
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [The Codman Medos programmable shunt valve. Evaluation of 53 implantations in 50 patients].
    Belliard H; Roux FX; Turak B; Nataf F; Devaux B; Cioloca C
    Neurochirurgie; 1996; 42(3):139-45; discussion 145-6. PubMed ID: 9084740
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model.
    Gorelick NL; Serra R; Iyer R; Um R; Grewal A; Monroe A; Antoine H; Beharry K; Cecia A; Kroll F; Ishida W; Perdomo-Pantoja A; Xu R; Loth F; Ye X; Suk I; Tyler B; Bayston R; Luciano MG
    Neurosurgery; 2020 Oct; 87(5):1046-1054. PubMed ID: 32521017
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An adjustable CSF shunt: advices for clinical use.
    Lundkvist B; Eklund A; Koskinen LO; Malm J
    Acta Neurol Scand; 2003 Jul; 108(1):38-42. PubMed ID: 12807391
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complications of lumboperitoneal shunts.
    Wang VY; Barbaro NM; Lawton MT; Pitts L; Kunwar S; Parsa AT; Gupta N; McDermott MW
    Neurosurgery; 2007 Jun; 60(6):1045-8; discussion 1049. PubMed ID: 17538378
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Medos Hakim programmable valve in the treatment of pediatric hydrocephalus.
    Reinprecht A; Dietrich W; Bertalanffy A; Czech T
    Childs Nerv Syst; 1997; 13(11-12):588-93; discussion 593-4. PubMed ID: 9454974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Laboratory evaluation of the phoenix CRx diamond valve.
    Czosnyka ZH; Czosnyka M; Richards HK; Pickard JD
    Neurosurgery; 2001 Mar; 48(3):689-93; discussion 693-4. PubMed ID: 11270563
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Shunt Devices for the Treatment of Adult Hydrocephalus: Recent Progress and Characteristics.
    Miyake H
    Neurol Med Chir (Tokyo); 2016 May; 56(5):274-83. PubMed ID: 27041631
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.