BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 9482229)

  • 1. Collateral branch formation related to cellular structures in the axon tract during corticopontine target recognition.
    Bastmeyer M; Daston MM; Possel H; O'Leary DD
    J Comp Neurol; 1998 Mar; 392(1):1-18. PubMed ID: 9482229
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectopic expression of the neural cell adhesion molecule L1 in astrocytes leads to changes in the development of the corticospinal tract.
    Ourednik J; Ourednik V; Bastmeyer M; Schachner M
    Eur J Neurosci; 2001 Nov; 14(9):1464-74. PubMed ID: 11722608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A target-derived chemoattractant controls the development of the corticopontine projection by a novel mechanism of axon targeting.
    O'Leary DD; Heffner CD; Kutka L; López-Mascaraque L; Missias A; Reinoso BS
    Dev Suppl; 1991; Suppl 2():123-30. PubMed ID: 1842350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Target control of collateral extension and directional axon growth in the mammalian brain.
    Heffner CD; Lumsden AG; O'Leary DD
    Science; 1990 Jan; 247(4939):217-20. PubMed ID: 2294603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutually Repulsive EphA7-EfnA5 Organize Region-to-Region Corticopontine Projection by Inhibiting Collateral Extension.
    Iguchi T; Oka Y; Yasumura M; Omi M; Kuroda K; Yagi H; Xie MJ; Taniguchi M; Bastmeyer M; Sato M
    J Neurosci; 2021 Jun; 41(22):4795-4808. PubMed ID: 33906900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action of a diffusible target-derived chemoattractant on cortical axon branch induction and directed growth.
    Sato M; Lopez-Mascaraque L; Heffner CD; O'Leary DD
    Neuron; 1994 Oct; 13(4):791-803. PubMed ID: 7946329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Target selection by cortical axons: alternative mechanisms to establish axonal connections in the developing brain.
    O'Leary DD; Bicknese AR; De Carlos JA; Heffner CD; Koester SE; Kutka LJ; Terashima T
    Cold Spring Harb Symp Quant Biol; 1990; 55():453-68. PubMed ID: 2132832
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamics of target recognition by interstitial axon branching along developing cortical axons.
    Bastmeyer M; O'Leary DD
    J Neurosci; 1996 Feb; 16(4):1450-9. PubMed ID: 8778296
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cortical axons branch to multiple subcortical targets by interstitial axon budding: implications for target recognition and "waiting periods".
    O'Leary DD; Terashima T
    Neuron; 1988 Dec; 1(10):901-10. PubMed ID: 3272157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basilar pontine gray of the opossum: a correlated light and electron microscopic analysis.
    Mihailoff GA; King JS
    J Comp Neurol; 1975 Feb; 159(4):521-52. PubMed ID: 1092735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A qualitative electron microscopic study of the corticopontine projections after neonatal cerebellar hemispherectomy.
    Leong SK
    Brain Res; 1980 Aug; 194(2):299-310. PubMed ID: 7388616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convergence of cortical and cerebellar projections on single basilar pontine neurons: a light and electron microscopic study in the rat.
    Lee HS; Mihailoff GA
    Neuroscience; 1990; 39(3):561-77. PubMed ID: 1711169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Principal neurons of the basilar pons as the source of a recurrent collateral system.
    Mihailoff GA
    Brain Res Bull; 1978; 3(4):319-32. PubMed ID: 318201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinohypothalamic tract neurons in the cervical enlargement of rats: locations of antidromically identified ascending axons and their collateral branches in the contralateral brain.
    Kostarczyk E; Zhang X; Giesler GJ
    J Neurophysiol; 1997 Jan; 77(1):435-51. PubMed ID: 9120585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The basilar pontine gray in the adult monkey (Macaca mulatta): a Golgi study.
    Copper MH; Fox CA
    J Comp Neurol; 1976 Jul; 168(1):145-73. PubMed ID: 819468
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate immunoreactivity in the rat basilar pons: light and electron microscopy reveals labeled boutons and cells of origin of afferent projections.
    Border BG; Mihailoff GA
    Neuroscience; 1991; 45(1):47-61. PubMed ID: 1721694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of the basilar pons in the North American opossum: dendrogenesis and maturation of afferent and efferent connections.
    King JS; Morgan JK; Bishop GA; Hazlett JC; Martin GF
    Anat Embryol (Berl); 1987; 176(2):191-202. PubMed ID: 2441628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microtubule fragmentation and partitioning in the axon during collateral branch formation.
    Yu W; Ahmad FJ; Baas PW
    J Neurosci; 1994 Oct; 14(10):5872-84. PubMed ID: 7931550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An autoradiographic study of the postnatal development of sensorimotor and visual components of the corticopontine system.
    Mihailoff GA; Adams CE; Woodward DJ
    J Comp Neurol; 1984 Jan; 222(1):116-27. PubMed ID: 6321562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Postnatal development of the pontine projections from the visual cortex of the mouse.
    Inoue K; Terashima T; Inoue Y
    Okajimas Folia Anat Jpn; 1991 Mar; 67(6):479-92. PubMed ID: 2062483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.