These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 9482235)

  • 1. Organization of direct hippocampal efferent projections to the cerebral cortex of the rhesus monkey: projections from CA1, prosubiculum, and subiculum to the temporal lobe.
    Blatt GJ; Rosene DL
    J Comp Neurol; 1998 Mar; 392(1):92-114. PubMed ID: 9482235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Entorhinal cortex of the monkey: V. Projections to the dentate gyrus, hippocampus, and subicular complex.
    Witter MP; Amaral DG
    J Comp Neurol; 1991 May; 307(3):437-59. PubMed ID: 1713237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: I. Convergence in the entorhinal, prorhinal, and perirhinal cortices.
    Saunders RC; Rosene DL
    J Comp Neurol; 1988 May; 271(2):153-84. PubMed ID: 2454246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey.
    Barbas H; Blatt GJ
    Hippocampus; 1995; 5(6):511-33. PubMed ID: 8646279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cingulate cortex of the rhesus monkey: II. Cortical afferents.
    Vogt BA; Pandya DN
    J Comp Neurol; 1987 Aug; 262(2):271-89. PubMed ID: 3624555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the efferents of the amygdala and the hippocampal formation in the rhesus monkey: II. Reciprocal and non-reciprocal connections.
    Saunders RC; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1988 May; 271(2):185-207. PubMed ID: 2454247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-hippocampal cortical projections from the entorhinal cortex in the rat and rhesus monkey.
    Kosel KC; Van Hoesen GW; Rosene DL
    Brain Res; 1982 Jul; 244(2):201-13. PubMed ID: 7116171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Connections between the medial temporal cortex and the CA1 subfield of the hippocampal formation in the Japanese monkey (Macaca fuscata).
    Yukie M
    J Comp Neurol; 2000 Jul; 423(2):282-98. PubMed ID: 10867659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct projections from the ventral TE area of the inferotemporal cortex to hippocampal field CA1 in the monkey.
    Yukie M; Iwai E
    Neurosci Lett; 1988 May; 88(1):6-10. PubMed ID: 2456493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cortical projections of the non-entorhinal hippocampal formation in the cynomolgus monkey (Macaca fascicularis).
    Insausti R; Muñoz M
    Eur J Neurosci; 2001 Aug; 14(3):435-51. PubMed ID: 11553294
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Origin and topography of fibers contributing to the fornix in macaque monkeys.
    Saunders RC; Aggleton JP
    Hippocampus; 2007; 17(5):396-411. PubMed ID: 17372974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The entorhinal cortex of the monkey: VI. Organization of projections from the hippocampus, subiculum, presubiculum, and parasubiculum.
    Witter MP; Amaral DG
    J Comp Neurol; 2021 Mar; 529(4):828-852. PubMed ID: 32656783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey.
    Rosene DL; Van Hoesen GW
    Science; 1977 Oct; 198(4314):315-7. PubMed ID: 410102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Topographical organization of the entorhinal projection to the dentate gyrus of the monkey.
    Witter MP; Van Hoesen GW; Amaral DG
    J Neurosci; 1989 Jan; 9(1):216-28. PubMed ID: 2913203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey.
    Aggleton JP; Wright NF; Vann SD; Saunders RC
    Hippocampus; 2012 Sep; 22(9):1883-900. PubMed ID: 22522494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cortical afferents to behaviorally defined regions of the inferior temporal and parahippocampal gyri as demonstrated by WGA-HRP.
    Martin-Elkins CL; Horel JA
    J Comp Neurol; 1992 Jul; 321(2):177-92. PubMed ID: 1380012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques.
    Demeter S; Rosene DL; Van Hoesen GW
    J Comp Neurol; 1990 Dec; 302(1):29-53. PubMed ID: 2086614
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents.
    Suzuki WA; Amaral DG
    J Comp Neurol; 1994 Dec; 350(4):497-533. PubMed ID: 7890828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extrinsic projections from area CA1 of the rat hippocampus: olfactory, cortical, subcortical, and bilateral hippocampal formation projections.
    van Groen T; Wyss JM
    J Comp Neurol; 1990 Dec; 302(3):515-28. PubMed ID: 1702115
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey.
    Barnes CL; Pandya DN
    J Comp Neurol; 1992 Apr; 318(2):222-44. PubMed ID: 1583161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.