These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 9482274)

  • 1. Simultaneous isolation of glial and neuronal fractions from rat brain homogenates: comparison of high-affinity L-glutamate transport properties.
    Daniels KK; Vickroy TW
    Neurochem Res; 1998 Jan; 23(1):103-13. PubMed ID: 9482274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glial plasmalemmal vesicles: a subcellular fraction from rat hippocampal homogenate distinct from synaptosomes.
    Nakamura Y; Iga K; Shibata T; Shudo M; Kataoka K
    Glia; 1993 Sep; 9(1):48-56. PubMed ID: 7902337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uptake of transmitter amino acids by glial plasmalemmal vesicles from different regions of rat central nervous system.
    Nakamura Y; Kubo H; Kataoka K
    Neurochem Res; 1994 Sep; 19(9):1145-50. PubMed ID: 7824067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonic anhydrase immunostaining in astrocytes in the rat cerebral cortex.
    Cammer W; Tansey FA
    J Neurochem; 1988 Jan; 50(1):319-22. PubMed ID: 2891787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.
    Suchak SK; Baloyianni NV; Perkinton MS; Williams RJ; Meldrum BS; Rattray M
    J Neurochem; 2003 Feb; 84(3):522-32. PubMed ID: 12558972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of glial contamination of synaptosomal-mitochondrial fractions of rat brain by radioimmunoassay of carbonic anhydrase (CA II).
    Delaunoy JP; Hog F; DeFeudis FV; Mandel P
    J Neurochem; 1979 Aug; 33(2):611-2. PubMed ID: 112221
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of the properties of gamma-aminobutyric acid and L-glutamate uptake into synaptic vesicles isolated from rat brain.
    Fykse EM; Christensen H; Fonnum F
    J Neurochem; 1989 Mar; 52(3):946-51. PubMed ID: 2465384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacology of sodium-dependent high-affinity L-[3H]glutamate transport in glial cultures.
    Garlin AB; Sinor AD; Sinor JD; Jee SH; Grinspan JB; Robinson MB
    J Neurochem; 1995 Jun; 64(6):2572-80. PubMed ID: 7760037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glial and neuronal glutamate transport following glutamine synthetase inhibition.
    Rothstein JD; Tabakoff B
    Biochem Pharmacol; 1985 Jan; 34(1):73-9. PubMed ID: 2857084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disruption of neuronal-glial-vascular units in the hippocampus of ovariectomized mice injected with D-galactose.
    Liu L; Su Y; Yang W; Xiao M; Gao J; Hu G
    Neuroscience; 2010 Aug; 169(2):596-608. PubMed ID: 20493929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective loss of phorbol-12,13-dibutyrate-facilitated L-glutamate transport in forebrain neurons of aged rats.
    Daniels KK; Vickroy TW
    J Gerontol A Biol Sci Med Sci; 1998 Nov; 53(6):B449-51. PubMed ID: 9823742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. (2S,3S,4R)-2-(carboxycyclopropyl)glycine, a potent and competitive inhibitor of both glial and neuronal uptake of glutamate.
    Nakamura Y; Kataoka K; Ishida M; Shinozaki H
    Neuropharmacology; 1993 Sep; 32(9):833-7. PubMed ID: 7901789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of enriched fractions from cerebral cortex containing isolated, metabolically active neuronal and glial cells.
    Rose SP
    Biochem J; 1967 Jan; 102(1):33-43. PubMed ID: 4291562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic vesicles from mammalian brain: large-scale purification and physical and immunochemical characterization.
    Floor E; Schaeffer SF; Feist BE; Leeman SE
    J Neurochem; 1988 May; 50(5):1588-96. PubMed ID: 3361314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation of hippocampal synaptosomes on Percoll gradients: cholinergic markers and ligand binding sites.
    Thorne B; Wonnacott S; Dunkley PR
    J Neurochem; 1991 Feb; 56(2):479-84. PubMed ID: 1846398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-affinity glutamate transporters in the rat retina: a major role of the glial glutamate transporter GLAST-1 in transmitter clearance.
    Rauen T; Taylor WR; Kuhlbrodt K; Wiessner M
    Cell Tissue Res; 1998 Jan; 291(1):19-31. PubMed ID: 9394040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport mechanism of glutamate by hypotonic-treated glial plasmalemmal vesicles from rat hippocampus. Effects of concentration gradients of Na+ and K+ and of ionophores.
    Nakamura Y; Kataoka K
    J Mol Neurosci; 1993; 4(4):255-62. PubMed ID: 7917834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localization of aminopeptidase N and dipeptidyl peptidase IV in pig striatum and in neuronal and glial cell cultures.
    Barnes K; Kenny AJ; Turner AJ
    Eur J Neurosci; 1994 Apr; 6(4):531-7. PubMed ID: 7912983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple marker analysis in the avian optic tectum reveals three classes of neuroglia and carbonic anhydrase-containing neurons.
    Linser PJ
    J Neurosci; 1985 Sep; 5(9):2388-96. PubMed ID: 2863336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for the presence of carbonic anhydrase in the plasma membrane of rat hepatocytes.
    Garcia-Marin JJ; Perez-Barriocanal F; Garcia A; Serrano MA; Regueiro P; Esteller A
    Biochim Biophys Acta; 1988 Nov; 945(1):17-22. PubMed ID: 3140895
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.