BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

460 related articles for article (PubMed ID: 9482716)

  • 1. The structure of the tetratricopeptide repeats of protein phosphatase 5: implications for TPR-mediated protein-protein interactions.
    Das AK; Cohen PW; Barford D
    EMBO J; 1998 Mar; 17(5):1192-9. PubMed ID: 9482716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The four canonical tpr subunits of human APC/C form related homo-dimeric structures and stack in parallel to form a TPR suprahelix.
    Zhang Z; Chang L; Yang J; Conin N; Kulkarni K; Barford D
    J Mol Biol; 2013 Nov; 425(22):4236-48. PubMed ID: 23583778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The tetratricopeptide repeat: a structural motif mediating protein-protein interactions.
    Blatch GL; Lässle M
    Bioessays; 1999 Nov; 21(11):932-9. PubMed ID: 10517866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The serine/threonine phosphatase PP5 interacts with CDC16 and CDC27, two tetratricopeptide repeat-containing subunits of the anaphase-promoting complex.
    Ollendorff V; Donoghue DJ
    J Biol Chem; 1997 Dec; 272(51):32011-8. PubMed ID: 9405394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the tetratricopeptide-containing domain of BUB1, BUBR1, and PP5 proves that domain amphiphilicity over amino acid sequence specificity governs protein adsorption and interfacial activity.
    Beaufils S; Grossmann JG; Renault A; Bolanos-Garcia VM
    J Phys Chem B; 2008 Jul; 112(27):7984-91. PubMed ID: 18547097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rac GTPase signaling through the PP5 protein phosphatase.
    Gentile S; Darden T; Erxleben C; Romeo C; Russo A; Martin N; Rossie S; Armstrong DL
    Proc Natl Acad Sci U S A; 2006 Mar; 103(13):5202-6. PubMed ID: 16549782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27.
    Zhang Z; Kulkarni K; Hanrahan SJ; Thompson AJ; Barford D
    EMBO J; 2010 Nov; 29(21):3733-44. PubMed ID: 20924356
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational diversity in the TPR domain-mediated interaction of protein phosphatase 5 with Hsp90.
    Cliff MJ; Harris R; Barford D; Ladbury JE; Williams MA
    Structure; 2006 Mar; 14(3):415-26. PubMed ID: 16531226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overlapping sites of tetratricopeptide repeat protein binding and chaperone activity in heat shock protein 90.
    Ramsey AJ; Russell LC; Whitt SR; Chinkers M
    J Biol Chem; 2000 Jun; 275(23):17857-62. PubMed ID: 10751404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile TPR domains accommodate different modes of target protein recognition and function.
    Allan RK; Ratajczak T
    Cell Stress Chaperones; 2011 Jul; 16(4):353-67. PubMed ID: 21153002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of residues in the TPR domain of Ssn6 responsible for interaction with the Tup1 protein.
    Gounalaki N; Tzamarias D; Vlassi M
    FEBS Lett; 2000 May; 473(1):37-41. PubMed ID: 10802055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of conserved residues required for the binding of a tetratricopeptide repeat domain to heat shock protein 90.
    Russell LC; Whitt SR; Chen MS; Chinkers M
    J Biol Chem; 1999 Jul; 274(29):20060-3. PubMed ID: 10400612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two structures of cyclophilin 40: folding and fidelity in the TPR domains.
    Taylor P; Dornan J; Carrello A; Minchin RF; Ratajczak T; Walkinshaw MD
    Structure; 2001 May; 9(5):431-8. PubMed ID: 11377203
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for TPR domain-mediated regulation of protein phosphatase 5.
    Yang J; Roe SM; Cliff MJ; Williams MA; Ladbury JE; Cohen PT; Barford D
    EMBO J; 2005 Jan; 24(1):1-10. PubMed ID: 15577939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of amino acids in the tetratricopeptide repeat and C-terminal domains of protein phosphatase 5 involved in autoinhibition and lipid activation.
    Kang H; Sayner SL; Gross KL; Russell LC; Chinkers M
    Biochemistry; 2001 Sep; 40(35):10485-90. PubMed ID: 11523989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and stability of designed TPR protein superhelices: unusual crystal packing and implications for natural TPR proteins.
    Kajander T; Cortajarena AL; Mochrie S; Regan L
    Acta Crystallogr D Biol Crystallogr; 2007 Jul; 63(Pt 7):800-11. PubMed ID: 17582171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of stable alpha-helical arrays from an idealized TPR motif.
    Main ER; Xiong Y; Cocco MJ; D'Andrea L; Regan L
    Structure; 2003 May; 11(5):497-508. PubMed ID: 12737816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective activators of protein phosphatase 5 target the auto-inhibitory mechanism.
    Haslbeck V; Drazic A; Eckl JM; Alte F; Helmuth M; Popowicz G; Schmidt W; Braun F; Weiwad M; Fischer G; Gemmecker G; Sattler M; Striggow F; Groll M; Richter K
    Biosci Rep; 2015 Apr; 35(3):. PubMed ID: 26182372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel tetratricopeptide repeat (TPR) containing PP5 serine/threonine protein phosphatase in the malaria parasite, Plasmodium falciparum.
    Dobson S; Kar B; Kumar R; Adams B; Barik S
    BMC Microbiol; 2001; 1():31. PubMed ID: 11737864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ro 90-7501 inhibits PP5 through a novel, TPR-dependent mechanism.
    Hong TJ; Park K; Choi EW; Hahn JS
    Biochem Biophys Res Commun; 2017 Jan; 482(2):215-220. PubMed ID: 27840051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.