These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 9482825)

  • 1. Relationships of cereal crops and other grasses.
    Kellogg EA
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2005-10. PubMed ID: 9482825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Pharus latifolius genome bridges the gap of early grass evolution.
    Ma PF; Liu YL; Jin GH; Liu JX; Wu H; He J; Guo ZH; Li DZ
    Plant Cell; 2021 May; 33(4):846-864. PubMed ID: 33630094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogeny of the grass family (Poaceae) from rpl16 intron sequence data.
    Zhang W
    Mol Phylogenet Evol; 2000 Apr; 15(1):135-46. PubMed ID: 10764541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phylogeny and a new tribal classification of the Panicoideae s.l. (Poaceae) based on plastid and nuclear sequence data and structural data.
    Sánchez-Ken JG; Clark LG
    Am J Bot; 2010 Oct; 97(10):1732-48. PubMed ID: 21616806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The complete chloroplast genome of tall fescue (Lolium arundinaceum; Poaceae) and comparison of whole plastomes from the family Poaceae.
    Cahoon AB; Sharpe RM; Mysayphonh C; Thompson EJ; Ward AD; Lin A
    Am J Bot; 2010 Jan; 97(1):49-58. PubMed ID: 21622366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phylogenetic structure in the grass family (Poaceae): evidence from the nuclear gene phytochrome B.
    Mathews S; Tsai RC; Kellogg EA
    Am J Bot; 2000 Jan; 87(1):96-107. PubMed ID: 10636833
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nuclear DNA variation, chromosome numbers and polyploidy in the endemic and indigenous grass flora of New Zealand.
    Murray BG; De Lange PJ; Ferguson AR
    Ann Bot; 2005 Dec; 96(7):1293-305. PubMed ID: 16243852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyphyly of Arundinoideae (Poaceae) and evolution of the twisted geniculate lemma awn.
    Teisher JK; McKain MR; Schaal BA; Kellogg EA
    Ann Bot; 2017 Nov; 120(5):725-738. PubMed ID: 28645142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicified bulliform cells of Poaceae: morphological characteristics that distinguish subfamilies.
    Chen I; Li KT; Tsang CH
    Bot Stud; 2020 Mar; 61(1):5. PubMed ID: 32124105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the C(4) phosphoenolpyruvate carboxylase gene diversity in grasses (Poaceae).
    Besnard G; Offmann B; Robert C; Rouch C; Cadet F
    Theor Appl Genet; 2002 Aug; 105(2-3):404-412. PubMed ID: 12582545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Are diversification rates and chromosome evolution in the temperate grasses (Pooideae) associated with major environmental changes in the Oligocene-Miocene?
    Pimentel M; Escudero M; Sahuquillo E; Minaya MÁ; Catalán P
    PeerJ; 2017; 5():e3815. PubMed ID: 28951814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary history of ergot with a new infrageneric classification (Hypocreales: Clavicipitaceae: Claviceps).
    Píchová K; Pažoutová S; Kostovčík M; Chudíčková M; Stodůlková E; Novák P; Flieger M; van der Linde E; Kolařík M
    Mol Phylogenet Evol; 2018 Jun; 123():73-87. PubMed ID: 29481949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phylogeny of the Paniceae (Poaceae: Panicoideae): integrating plastid DNA sequences and morphology into a new classification.
    Morrone O; Aagesen L; Scataglini MA; Salariato DL; Denham SS; Chemisquy MA; Sede SM; Giussani LM; Kellogg EA; Zuloaga FO
    Cladistics; 2012 Aug; 28(4):333-356. PubMed ID: 34836451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Late Cretaceous origin of the rice tribe provides evidence for early diversification in Poaceae.
    Prasad V; Strömberg CA; Leaché AD; Samant B; Patnaik R; Tang L; Mohabey DM; Ge S; Sahni A
    Nat Commun; 2011 Sep; 2():480. PubMed ID: 21934664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The phylogeny of the BEP clade in grasses revisited: evidence from the whole-genome sequences of chloroplasts.
    Wu ZQ; Ge S
    Mol Phylogenet Evol; 2012 Jan; 62(1):573-8. PubMed ID: 22093967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolving deep relationships of PACMAD grasses: a phylogenomic approach.
    Cotton JL; Wysocki WP; Clark LG; Kelchner SA; Pires JC; Edger PP; Mayfield-Jones D; Duvall MR
    BMC Plant Biol; 2015 Jul; 15():178. PubMed ID: 26160195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Grass pollen allergens globally: the contribution of subtropical grasses to burden of allergic respiratory diseases.
    Davies JM
    Clin Exp Allergy; 2014 Jun; 44(6):790-801. PubMed ID: 24684550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary implications of matK indels in Poaceae.
    Hilu KW; Alice LA
    Am J Bot; 1999 Dec; 86(12):1735-41. PubMed ID: 10602766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic study of Oryzoideae species and related taxa of the Poaceae based on atpB-rbcL and ndhF DNA sequences.
    Zeng X; Yuan Z; Tong X; Li Q; Gao W; Qin M; Liu Z
    Mol Biol Rep; 2012 May; 39(5):5737-44. PubMed ID: 22189545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New grass phylogeny resolves deep evolutionary relationships and discovers C4 origins.
    Grass Phylogeny Working Group II
    New Phytol; 2012 Jan; 193(2):304-12. PubMed ID: 22115274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.