These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 9482825)
21. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). Zhang YJ; Ma PF; Li DZ PLoS One; 2011; 6(5):e20596. PubMed ID: 21655229 [TBL] [Abstract][Full Text] [Related]
22. Identification of the genes at Herridge R; McCourt T; Jacobs JME; Mace P; Brownfield L; Macknight R Front Plant Sci; 2022; 13():1011299. PubMed ID: 36330270 [TBL] [Abstract][Full Text] [Related]
23. Grass evolution inferred from chromosomal rearrangements and geometrical and statistical features in RNA structure. Caetano-Anollés G J Mol Evol; 2005 May; 60(5):635-52. PubMed ID: 15983872 [TBL] [Abstract][Full Text] [Related]
25. Sixty million years in evolution of soft grain trait in grasses: emergence of the softness locus in the common ancestor of Pooideae and Ehrhartoideae, after their divergence from Panicoideae. Charles M; Tang H; Belcram H; Paterson A; Gornicki P; Chalhoub B Mol Biol Evol; 2009 Jul; 26(7):1651-61. PubMed ID: 19395588 [TBL] [Abstract][Full Text] [Related]
26. The molecular allergology of subtropical grass pollen. Kailaivasan T; Davies JM Mol Immunol; 2018 Aug; 100():126-135. PubMed ID: 29778490 [TBL] [Abstract][Full Text] [Related]
27. Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Huang S; Sirikhachornkit A; Faris JD; Su X; Gill BS; Haselkorn R; Gornicki P Plant Mol Biol; 2002; 48(5-6):805-20. PubMed ID: 11999851 [TBL] [Abstract][Full Text] [Related]
28. Architectural evolution and its implications for domestication in grasses. Doust A Ann Bot; 2007 Nov; 100(5):941-50. PubMed ID: 17478546 [TBL] [Abstract][Full Text] [Related]
29. Relevance of Allergenic Sensitization to Cynodon dactylon and Phragmites communis: Cross-reactivity With Pooideae Grasses. López-Matas MA; Moya R; Cardona V; Valero A; Gaig P; Malet A; Viñas M; García-Moral A; Labrador M; Alcoceba E; Ibero M; Carnés J J Investig Allergol Clin Immunol; 2016; 26(5):295-303. PubMed ID: 27763856 [TBL] [Abstract][Full Text] [Related]
30. Teff, an Orphan Cereal in the Chloridoideae, Provides Insights into the Evolution of Storage Proteins in Grasses. Zhang W; Xu J; Bennetzen JL; Messing J Genome Biol Evol; 2016 Jun; 8(6):1712-21. PubMed ID: 27190000 [TBL] [Abstract][Full Text] [Related]
31. EVOLUTIONARY ANALYSIS OF THE LARGE SUBUNIT OF CARBOXYLASE (rbcL) NUCLEOTIDE SEQUENCE AMONG THE GRASSES (GRAMINEAE). Doebley J; Durbin M; Golenberg EM; Clegg MT; Ma DP Evolution; 1990 Jul; 44(4):1097-1108. PubMed ID: 28569033 [TBL] [Abstract][Full Text] [Related]
32. Whole chloroplast genome comparison of rice, maize, and wheat: implications for chloroplast gene diversification and phylogeny of cereals. Matsuoka Y; Yamazaki Y; Ogihara Y; Tsunewaki K Mol Biol Evol; 2002 Dec; 19(12):2084-91. PubMed ID: 12446800 [TBL] [Abstract][Full Text] [Related]
33. Genome sequencing and analysis of the model grass Brachypodium distachyon. International Brachypodium Initiative Nature; 2010 Feb; 463(7282):763-8. PubMed ID: 20148030 [TBL] [Abstract][Full Text] [Related]
34. Phylogenetic analysis of Tilletia and allied genera in order Tilletiales (Ustilaginomycetes; Exobasidiomycetidae) based on large subunit nuclear rDNA sequences. Castlebury LA; Carris LM; Vinky K Mycologia; 2005; 97(4):888-900. PubMed ID: 16457358 [TBL] [Abstract][Full Text] [Related]
35. Evidence for adaptive evolution of low-temperature stress response genes in a Pooideae grass ancestor. Vigeland MD; Spannagl M; Asp T; Paina C; Rudi H; Rognli OA; Fjellheim S; Sandve SR New Phytol; 2013 Sep; 199(4):1060-1068. PubMed ID: 23701123 [TBL] [Abstract][Full Text] [Related]
36. Large multi-gene phylogenetic trees of the grasses (Poaceae): progress towards complete tribal and generic level sampling. Bouchenak-Khelladi Y; Salamin N; Savolainen V; Forest F; Bank Mv; Chase MW; Hodkinson TR Mol Phylogenet Evol; 2008 May; 47(2):488-505. PubMed ID: 18358746 [TBL] [Abstract][Full Text] [Related]
37. Water relations traits of C4 grasses depend on phylogenetic lineage, photosynthetic pathway, and habitat water availability. Liu H; Osborne CP J Exp Bot; 2015 Feb; 66(3):761-73. PubMed ID: 25504656 [TBL] [Abstract][Full Text] [Related]
38. Adaptive radiations should not be simplified: The case of the danthonioid grasses. Peter Linder H; Bouchenak-Khelladi Y Mol Phylogenet Evol; 2017 Dec; 117():179-190. PubMed ID: 28987638 [TBL] [Abstract][Full Text] [Related]
39. Evolutionary history of chloridoid grasses estimated from 122 nuclear loci. Fisher AE; Hasenstab KM; Bell HL; Blaine E; Ingram AL; Columbus JT Mol Phylogenet Evol; 2016 Dec; 105():1-14. PubMed ID: 27554759 [TBL] [Abstract][Full Text] [Related]
40. The origin and evolution of a two-component system of paralogous genes encoding the centromeric histone CENH3 in cereals. Elisafenko EA; Evtushenko EV; Vershinin AV BMC Plant Biol; 2021 Nov; 21(1):541. PubMed ID: 34794377 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]