BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 9482901)

  • 21. Survival rate and expression of Heat-shock protein 70 and Frost genes after temperature stress in Drosophila melanogaster lines that are selected for recovery time from temperature coma.
    Udaka H; Ueda C; Goto SG
    J Insect Physiol; 2010 Dec; 56(12):1889-94. PubMed ID: 20713057
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Omega speckles - a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila.
    Prasanth KV; Rajendra TK; Lal AK; Lakhotia SC
    J Cell Sci; 2000 Oct; 113 Pt 19():3485-97. PubMed ID: 10984439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spatial analysis of gene regulation reveals new insights into the molecular basis of upper thermal limits.
    Telonis-Scott M; Clemson AS; Johnson TK; Sgrò CM
    Mol Ecol; 2014 Dec; 23(24):6135-51. PubMed ID: 25401770
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellular damage as induced by high temperature is dependent on rate of temperature change - investigating consequences of ramping rates on molecular and organismal phenotypes in Drosophila melanogaster.
    Sørensen JG; Loeschcke V; Kristensen TN
    J Exp Biol; 2013 Mar; 216(Pt 5):809-14. PubMed ID: 23155086
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
    Gerken AR; Mackay TF; Morgan TJ
    J Therm Biol; 2016 Jul; 59():77-85. PubMed ID: 27264892
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential expression of small heat shock protein genes Hsp23 and Hsp40, and heat shock gene Hsr-omega in fruit flies (Drosophila melanogaster) along a microclimatic gradient.
    Carmel J; Rashkovetsky E; Nevo E; Korol A
    J Hered; 2011; 102(5):593-603. PubMed ID: 21505045
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster.
    Sejerkilde M; Sørensen JG; Loeschcke V
    J Insect Physiol; 2003 Aug; 49(8):719-26. PubMed ID: 12880651
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Gene expression profile analysis of Drosophila melanogaster selected for resistance to environmental stressors.
    Sørensen JG; Nielsen MM; Loeschcke V
    J Evol Biol; 2007 Jul; 20(4):1624-36. PubMed ID: 17584255
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Specific induction of the hsr omega locus of Drosophila melanogaster by amides.
    Tapadia MG; Lakhotia SC
    Chromosome Res; 1997 Sep; 5(6):359-62. PubMed ID: 9364937
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster.
    Singh AK; Lakhotia SC
    J Biosci; 2012 Sep; 37(4):659-78. PubMed ID: 22922191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stability of tandem repeats in the Drosophila melanogaster Hsr-omega nuclear RNA.
    Hogan NC; Slot F; Traverse KL; Garbe JC; Bendena WG; Pardue ML
    Genetics; 1995 Apr; 139(4):1611-21. PubMed ID: 7540581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High resolution mapping of candidate alleles for desiccation resistance in Drosophila melanogaster under selection.
    Telonis-Scott M; Gane M; DeGaris S; Sgrò CM; Hoffmann AA
    Mol Biol Evol; 2012 May; 29(5):1335-51. PubMed ID: 22130970
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Short transcripts of the ternary complex provide insight into RNA polymerase II elongational pausing.
    Rasmussen EB; Lis JT
    J Mol Biol; 1995 Oct; 252(5):522-35. PubMed ID: 7563071
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human sat III and Drosophila hsr omega transcripts: a common paradigm for regulation of nuclear RNA processing in stressed cells.
    Jolly C; Lakhotia SC
    Nucleic Acids Res; 2006; 34(19):5508-14. PubMed ID: 17020918
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative genomics of starvation stress resistance in Drosophila.
    Harbison ST; Chang S; Kamdar KP; Mackay TF
    Genome Biol; 2005; 6(4):R36. PubMed ID: 15833123
    [TBL] [Abstract][Full Text] [Related]  

  • 36. New levels of transcriptome complexity at upper thermal limits in wild Drosophila revealed by exon expression analysis.
    Telonis-Scott M; van Heerwaarden B; Johnson TK; Hoffmann AA; Sgrò CM
    Genetics; 2013 Nov; 195(3):809-30. PubMed ID: 24002645
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cold hardening and transcriptional change in Drosophila melanogaster.
    Qin W; Neal SJ; Robertson RM; Westwood JT; Walker VK
    Insect Mol Biol; 2005 Dec; 14(6):607-13. PubMed ID: 16313561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Survival of heat stress with and without heat hardening in Drosophila melanogaster: interactions with larval density.
    Arias LN; Sambucetti P; Scannapieco AC; Loeschcke V; Norry FM
    J Exp Biol; 2012 Jul; 215(Pt 13):2220-5. PubMed ID: 22675182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does increased heat resistance result in higher susceptibility to predation? A test using Drosophila melanogaster selection and hardening.
    Hangartner S; Dworkin I; DeNieu M; Hoffmann AA
    J Evol Biol; 2017 Jun; 30(6):1153-1164. PubMed ID: 28386918
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Heavy heat shock induces genetic variation in a polygenic system of a quantitative trait in Drosophila].
    Vasil'eva LA; Ratner VA
    Genetika; 2000 Apr; 36(4):493-9. PubMed ID: 10822810
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.