BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9483417)

  • 1. Fluid uptake by the renal medullary vasa recta: an estimate based on a quantitative analysis of the distribution of fenestrae in the vasa recta of young Sprague-Dawley rats.
    MacPhee PJ
    Exp Physiol; 1998 Jan; 83(1):23-34. PubMed ID: 9483417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrastructural differences between rat inner medullary descending and ascending vasa recta;
    Schwartz MM; Karnovsky MJ; Vehkatachalam MA
    Lab Invest; 1976 Aug; 35(2):161-70. PubMed ID: 957604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and perfusion of rat inner medullary vasa recta.
    Evans KK; Nawata CM; Pannabecker TL
    Am J Physiol Renal Physiol; 2015 Aug; 309(4):F300-4. PubMed ID: 26062876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating rat renal medullary interstitial oncotic pressures and the driving force for fluid uptake into ascending vasa recta.
    MacPhee PJ
    J Physiol; 1998 Jan; 506 ( Pt 2)(Pt 2):529-38. PubMed ID: 9490876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An examination of transcapillary water flux in renal inner medulla.
    Sanjana VM; Johnston PA; Robertson CR; Jamison RL
    Am J Physiol; 1976 Aug; 231(2):313-8. PubMed ID: 961881
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid uptake from the renal medulla into the ascending vasa recta in anaesthetized rats.
    MacPhee PJ; Michel CC
    J Physiol; 1995 Aug; 487(1):169-83. PubMed ID: 7473246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transport of sodium and urea in outer medullary descending vasa recta.
    Pallone TL; Work J; Myers RL; Jamison RL
    J Clin Invest; 1994 Jan; 93(1):212-22. PubMed ID: 8282790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aquaporin-1 water channels in short and long loop descending thin limbs and in descending vasa recta in rat kidney.
    Nielsen S; Pallone T; Smith BL; Christensen EI; Agre P; Maunsbach AB
    Am J Physiol; 1995 Jun; 268(6 Pt 2):F1023-37. PubMed ID: 7541952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct determination of vasa recta blood flow in the rat renal papilla.
    Holliger C; Lemley KV; Schmitt SL; Thomas FC; Robertson CR; Jamison RL
    Circ Res; 1983 Sep; 53(3):401-13. PubMed ID: 6883657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interstitial water and solute recovery by inner medullary vasa recta.
    Edwards A; Delong MJ; Pallone TL
    Am J Physiol Renal Physiol; 2000 Feb; 278(2):F257-69. PubMed ID: 10662730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydraulic and oncotic pressure measurements in inner medulla of mammalian kidney.
    Sanjana VM; Johnston PA; Deen WM; Robertson CR; Brenner BM; Jamison RL
    Am J Physiol; 1975 Jun; 228(6):1921-6. PubMed ID: 1155623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cycles and separations in a model of the renal medulla.
    Thomas SR
    Am J Physiol; 1998 Nov; 275(5):F671-90. PubMed ID: 9815126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Renal medullary circulation: morphological characteristics of vessels and their organization].
    Kriz W
    Klin Wochenschr; 1982 Sep; 60(18):1063-9. PubMed ID: 7144053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architecture of inner medullary descending and ascending vasa recta: pathways for countercurrent exchange.
    Yuan J; Pannabecker TL
    Am J Physiol Renal Physiol; 2010 Jul; 299(1):F265-72. PubMed ID: 20392798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of plasma proteins across vasa recta in the renal medulla.
    Zhang W; Edwards A
    Am J Physiol Renal Physiol; 2001 Sep; 281(3):F478-92. PubMed ID: 11502597
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluid uptake in the renal papilla by vasa recta estimated by two methods simultaneously.
    Zimmerhackl B; Robertson CR; Jamison RL
    Am J Physiol; 1985 Mar; 248(3 Pt 2):F347-53. PubMed ID: 3976897
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence that aquaporin-1 mediates NaCl-induced water flux across descending vasa recta.
    Pallone TL; Kishore BK; Nielsen S; Agre P; Knepper MA
    Am J Physiol; 1997 May; 272(5 Pt 2):F587-96. PubMed ID: 9176368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced medullary vasoconstriction.
    Dickhout JG; Mori T; Cowley AW
    Circ Res; 2002 Sep; 91(6):487-93. PubMed ID: 12242266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of vasa recta flow on concentrating ability of models of renal inner medulla.
    Stephenson JL; Wang H; Tewarson RP
    Am J Physiol; 1995 Apr; 268(4 Pt 2):F698-709. PubMed ID: 7733327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intact kidney slice model to investigate vasa recta properties and function in situ.
    Crawford C; Kennedy-Lydon T; Sprott C; Desai T; Sawbridge L; Munday J; Unwin RJ; Wildman SS; Peppiatt-Wildman CM
    Nephron Physiol; 2012; 120(3):p17-31. PubMed ID: 22833057
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.