BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9483627)

  • 1. Dose uniformity of ferromagnetic seed implants in tissue with discrete vasculature: a numerical study on the impact of seed characteristics and implantation techniques.
    van Wieringen N; Kotte AN; van Leeuwen GM; Lagendijk JJ; van Dijk JD; Nieuwenhuys GJ
    Phys Med Biol; 1998 Jan; 43(1):121-38. PubMed ID: 9483627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modelling tissue heating with ferromagnetic seeds.
    Kotte AN; van Wieringen N; Lagendijk JJ
    Phys Med Biol; 1998 Jan; 43(1):105-20. PubMed ID: 9483626
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of novel thermobrachytherapy seeds for realistic prostate seed implant treatments.
    Warrell G; Shvydka D; Parsai EI
    Med Phys; 2016 Nov; 43(11):6033. PubMed ID: 27806619
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment planning for ferromagnetic seed heating.
    Chin RB; Stauffer PR
    Int J Radiat Oncol Biol Phys; 1991 Jul; 21(2):431-9. PubMed ID: 2061119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of catheters and coatings on the performance of palladium-nickel thermoseeds: evaluation and design of implantation techniques.
    van Wieringen N; van Dijk JD; van Veldhuizen J; Nieuwenhuys GJ
    Int J Hyperthermia; 1997; 13(2):187-204. PubMed ID: 9147145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of interseed spacing, tissue perfusion, thermoseed temperatures and catheters in ferromagnetic hyperthermia: results from simulations using finite element models of thermoseeds and catheters.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR
    IEEE Trans Biomed Eng; 1994 Oct; 41(10):975-85. PubMed ID: 7959805
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional simulations of ferromagnetic implant hyperthermia.
    Chen ZP; Roemer RB; Cetas TC
    Med Phys; 1992; 19(4):989-97. PubMed ID: 1518488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new computer method to quickly and accurately compute steady-state temperatures from ferromagnetic seed heating.
    Indik RA; Indik JH
    Med Phys; 1994 Jul; 21(7):1135-44. PubMed ID: 7968846
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dosimetric and thermal properties of a newly developed thermobrachytherapy seed with ferromagnetic core for treatment of solid tumors.
    Gautam B; Parsai EI; Shvydka D; Feldmeier J; Subramanian M
    Med Phys; 2012 Apr; 39(4):1980-90. PubMed ID: 22482619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting effects of blood flow rate and size of vessels in a vasculature on hyperthermia treatments using computer simulation.
    Huang HW; Shih TC; Liauh CT
    Biomed Eng Online; 2010 Mar; 9():18. PubMed ID: 20346157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A description of discrete vessel segments in thermal modelling of tissues.
    Kotte A; van Leeuwen G; de Bree J; van der Koijk J; Crezee H; Lagendijk J
    Phys Med Biol; 1996 May; 41(5):865-84. PubMed ID: 8735254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional temperature control of palladium-nickel thermoseeds: a computer aided and experimental evaluation.
    van Wieringen N; van Dijk JD; van Veldhuizen J; Nieuwenhuys GJ
    Int J Hyperthermia; 1997; 13(3):269-86. PubMed ID: 9222811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Practical considerations for maximizing heat production in a novel thermobrachytherapy seed prototype.
    Gautam B; Warrell G; Shvydka D; Subramanian M; Ishmael Parsai E
    Med Phys; 2014 Feb; 41(2):023301. PubMed ID: 24506651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast thermal simulations and temperature optimization for hyperthermia treatment planning, including realistic 3D vessel networks.
    Kok HP; van den Berg CA; Bel A; Crezee J
    Med Phys; 2013 Oct; 40(10):103303. PubMed ID: 24089933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dose uniformity in MECS interstitial hyperthermia: the impact of longitudinal control in model anatomies.
    van der Koijk JF; Crezee J; van Leeuwen GM; Battermann JJ; Lagendijk JJ
    Phys Med Biol; 1996 Mar; 41(3):429-44. PubMed ID: 8778824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calculation of heating power generated from ferromagnetic thermal seed (PdCo-PdNi-CuNi) alloys used as interstitial hyperthermia implants.
    El-Sayed AH; Aly AA; EI-Sayed NI; Mekawy MM; EI-Gendy AA
    J Mater Sci Mater Med; 2007 Mar; 18(3):523-8. PubMed ID: 17334704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast and efficient computer modeling of ferromagnetic seed arrays of arbitrary orientation for hyperthermia treatment planning.
    Indik JH; Indik RA; Cetas TC
    Int J Radiat Oncol Biol Phys; 1994 Oct; 30(3):653-62. PubMed ID: 7928497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temperature-dependent versus constant-rate blood perfusion modelling in ferromagnetic thermoseed hyperthermia: results with a model of the human prostate.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Frye DM; Paliwal BR
    Int J Hyperthermia; 1994; 10(4):517-36. PubMed ID: 7963808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Errors in the two-dimensional simulation of ferromagnetic implant hyperthermia.
    Chen ZP; Roemer RB; Cetas TC
    Int J Hyperthermia; 1991; 7(5):735-9. PubMed ID: 1940508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization and experimental characterization of the innovative thermo-brachytherapy seed for prostate cancer treatment.
    Taghizadeh S; Shvydka D; Shan A; Mian OY; Parsai EI
    Med Phys; 2024 Feb; 51(2):839-853. PubMed ID: 38159297
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.