BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 9483627)

  • 21. Temperature simulations in tissue with a realistic computer generated vessel network.
    Van Leeuwen GM; Kotte AN; Raaymakers BW; Lagendijk JJ
    Phys Med Biol; 2000 Apr; 45(4):1035-49. PubMed ID: 10795990
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modelling the thermal impact of a discrete vessel tree.
    Kotte AN; van Leeuwen GM; Lagendijk JJ
    Phys Med Biol; 1999 Jan; 44(1):57-74. PubMed ID: 10071875
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A theoretical comparison of the temperature distributions produced by three interstitial hyperthermia systems.
    Mechling JA; Strohbehn JW
    Int J Radiat Oncol Biol Phys; 1986 Dec; 12(12):2137-49. PubMed ID: 3793551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy.
    Yuan P
    Med Eng Phys; 2008 Mar; 30(2):135-43. PubMed ID: 17493861
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Numerical simulation of thermal disposition with induction heating used for oncological hyperthermic treatment.
    Dughiero F; Corazza S
    Med Biol Eng Comput; 2005 Jan; 43(1):40-6. PubMed ID: 15742718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The use of generalized cell-survival data in a physiologically based objective function for hyperthermia treatment planning: a sensitivity study with a simple tissue model implanted with an array of ferromagnetic thermoseeds.
    Tompkins DT; Vanderby R; Klein SA; Beckman WA; Steeves RA; Paliwal BR
    Int J Radiat Oncol Biol Phys; 1994 Nov; 30(4):929-43. PubMed ID: 7960996
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How to apply a discrete vessel model in thermal simulations when only incomplete vessel data are available.
    Raaymakers BW; Kotte AN; Lagendijk JJ
    Phys Med Biol; 2000 Nov; 45(11):3385-401. PubMed ID: 11098912
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hyperthermia induction with thermally self-regulated ferromagnetic implants.
    Lilly MB; Brezovich IA; Atkinson WJ
    Radiology; 1985 Jan; 154(1):243-4. PubMed ID: 3964942
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The influence of vasculature on temperature distributions in MECS interstitial hyperthermia: importance of longitudinal control.
    van der Koijk JF; Lagendijk JJ; Crezee J; de Bree J; Kotte AN; van Leeuwen GM; Battermann JJ
    Int J Hyperthermia; 1997; 13(4):365-85. PubMed ID: 9278767
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ferromagnetic self-regulating reheatable thermal rod implants for in situ tissue ablation.
    Rehman J; Landman J; Tucker RD; Bostwick DG; Sundaram CP; Clayman RV
    J Endourol; 2002 Sep; 16(7):523-31. PubMed ID: 12396447
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prostate brachytherapy postimplant dosimetry: seed orientation and the impact of dosimetric anisotropy in stranded implants.
    Chng N; Spadinger I; Rasoda R; Morris WJ; Salcudean S
    Med Phys; 2012 Feb; 39(2):721-31. PubMed ID: 22320782
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal properties of capacitively coupled electrodes in interstitial hyperthermia.
    van der Koijk JF; Crezee J; Lagendijk JJ
    Phys Med Biol; 1998 Jan; 43(1):139-53. PubMed ID: 9483628
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A three-dimensional description of heating patterns in vascularised tissues during hyperthermic treatment.
    Lagendijk JJ; Schellekens M; Schipper J; van der Linden PM
    Phys Med Biol; 1984 May; 29(5):495-507. PubMed ID: 6739541
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimisation-based thermal treatment planning for catheter-based ultrasound hyperthermia.
    Chen X; Diederich CJ; Wootton JH; Pouliot J; Hsu IC
    Int J Hyperthermia; 2010 Feb; 26(1):39-55. PubMed ID: 20100052
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal ablation of canine prostate using interstitial temperature self-regulating seeds: new treatment for prostate cancer.
    Paulus JA; Tucker RD; Loening SA; Flanagan SW
    J Endourol; 1997 Aug; 11(4):295-300. PubMed ID: 9376852
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Temperature distribution in tissues from a regular array of hot source implants: an analytical approximation.
    Haider SA; Cetas TC; Roemer RB
    IEEE Trans Biomed Eng; 1993 May; 40(5):408-17. PubMed ID: 8225329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A comparative study of seed localization and dose calculation on pre- and post-implantation ultrasound and CT images for low-dose-rate prostate brachytherapy.
    Ali I; Algan O; Thompson S; Sindhwani P; Herman T; Cheng CY; Ahmad S
    Phys Med Biol; 2009 Sep; 54(18):5595-611. PubMed ID: 19717887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dose calculation for permanent prostate implants incorporating spatially anisotropic linearly time-resolving edema.
    Monajemi TT; Clements CM; Sloboda RS
    Med Phys; 2011 Apr; 38(4):2289-98. PubMed ID: 21626964
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interstitial hyperthermia.
    Milligan AJ; Dobelbower RR
    Med Instrum; 1984; 18(3):175-80. PubMed ID: 6748996
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal power deposition in hyperthermia. I. The treatment goal: the ideal temperature distribution: the role of large blood vessels.
    Roemer RB
    Int J Hyperthermia; 1991; 7(2):317-41. PubMed ID: 1880458
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.