These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 9483775)

  • 1. Comparisons of the Rayleigh and K-distribution models using in vivo breast and liver tissue.
    Molthen RC; Shankar PM; Reid JM; Forsberg F; Halpern EJ; Piccoli CW; Goldberg BB
    Ultrasound Med Biol; 1998 Jan; 24(1):93-100. PubMed ID: 9483775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Studies on the use of non-Rayleigh statistics for ultrasonic tissue characterization.
    Shankar PM; Molthen R; Narayanan VM; Reid JM; Genis V; Forsberg F; Piccoli CW; Lindenmayer AE; Goldberg BB
    Ultrasound Med Biol; 1996; 22(7):873-82. PubMed ID: 8923706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of ultrasonic B-scans using non-Rayleigh statistics.
    Molthen RC; Shankar PM; Reid JM
    Ultrasound Med Biol; 1995; 21(2):161-70. PubMed ID: 7571126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non-Rayleigh statistics of ultrasonic backscattered signals.
    Narayanan VM; Shankar PM; Reid JM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1994; 41(6):845-52. PubMed ID: 18263274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A general statistical model for ultrasonic backscattering from tissues.
    Mohana Shankar P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(3):727-36. PubMed ID: 18238602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of the K-distribution for classification of breast masses.
    Shankar PM; Dumane VA; Reid JM; Genis V; Forsberg F; Piccoli CW; Goldberg BB
    Ultrasound Med Biol; 2000 Nov; 26(9):1503-10. PubMed ID: 11179624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification of breast masses in ultrasonic B scans using Nakagami and K distributions.
    Shankar PM; Dumane VA; George T; Piccoli CW; Reid JM; Forsberg F; Goldberg BB
    Phys Med Biol; 2003 Jul; 48(14):2229-40. PubMed ID: 12894981
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for ultrasonic scattering from tissues based on the K distribution.
    Shankar PM
    Phys Med Biol; 1995 Oct; 40(10):1633-49. PubMed ID: 8532745
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneous Tissue Characterization Using Ultrasound: A Comparison of Fractal Analysis Backscatter Models on Liver Tumors.
    Al-Kadi OS; Chung DY; Coussios CC; Noble JA
    Ultrasound Med Biol; 2016 Jul; 42(7):1612-26. PubMed ID: 27056610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasonic tissue characterization using a generalized Nakagami model.
    Shankar PM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Nov; 48(6):1716-20. PubMed ID: 11800135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Statistics of envelope of high-frequency ultrasonic backscatter from human skin in vivo.
    Raju BI; Srinivasan MA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Jul; 49(7):871-82. PubMed ID: 12152941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of Homodyned K Distribution Modeling Ultrasonic Speckles from Scatterers with Varying Spatial Organizations.
    Hu X; Zhang Y; Deng L; Cai G; Zhang Q; Zhou Y; Zhang K; Zhang J
    J Healthc Eng; 2017; 2017():8154780. PubMed ID: 29312656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A statistical model for the ultrasonic backscattered echo from tissue containing microcalcifications.
    Shankar P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):932-42. PubMed ID: 23661127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Harmonic amplitude distribution in a wideband ultrasonic wavefront after propagation through human abdominal wall and breast specimens.
    Liu DL; Waag RC
    J Acoust Soc Am; 1997 Feb; 101(2):1172-83. PubMed ID: 9035403
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistics of the envelope of ultrasonic backscatter from human trabecular bone.
    Litniewski J; Cieslik L; Wojcik J; Nowicki A
    J Acoust Soc Am; 2011 Oct; 130(4):2224-32. PubMed ID: 21973377
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical characterization of diffuse scattering in ultrasound images.
    Georgiou G; Cohen FS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1998; 45(1):57-64. PubMed ID: 18244158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of non-Rayleigh statistics for the identification of tumors in ultrasonic B-scans of the breast.
    Shankar PM; Reid JM; Ortega H; Piccoli CW; Goldberg BB
    IEEE Trans Med Imaging; 1993; 12(4):687-92. PubMed ID: 18218463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of ultrasound frequency on the Nakagami statistics of human liver tissues.
    Tsui PH; Zhou Z; Lin YH; Hung CM; Chung SJ; Wan YL
    PLoS One; 2017; 12(8):e0181789. PubMed ID: 28763461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved approximation of Bergmann's form for the Rayleigh wave velocity.
    Vinh PC; Malischewsky PG
    Ultrasonics; 2007 Dec; 47(1-4):49-54. PubMed ID: 17825868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of microstructural alterations of normal and pathological breast tissue in vivo using the AR cepstrum.
    Bige Y; Hanfeng Z; Rong W
    Ultrasonics; 2006 Feb; 44(2):211-5. PubMed ID: 16387338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.