These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 9483777)

  • 1. Validation of displacement measurements obtained from ultrasonic images during indentation testing.
    Kawchuk GN; Elliott PD
    Ultrasound Med Biol; 1998 Jan; 24(1):105-11. PubMed ID: 9483777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An ultrasound indentation system for biomechanical properties assessment of soft tissues in-vivo.
    Zheng YP; Mak AF
    IEEE Trans Biomed Eng; 1996 Sep; 43(9):912-8. PubMed ID: 9214806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The accuracy of ultrasonic indentation in detecting simulated bone displacement: a comparison of three techniques.
    Kawchuk GN; Liddle TR; Fauvel OR; Johnston C
    J Manipulative Physiol Ther; 2006 Feb; 29(2):126-33. PubMed ID: 16461171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel method to obtain modulus image of soft tissues using ultrasound water jet indentation: a phantom study.
    Lu MH; Zheng YP; Huang QH
    IEEE Trans Biomed Eng; 2007 Jan; 54(1):114-21. PubMed ID: 17260862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of corneal tangent modulus using ultrasound indentation.
    Wang LK; Huang YP; Tian L; Kee CS; Zheng YP
    Ultrasonics; 2016 Sep; 71():20-28. PubMed ID: 27262352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel noncontact ultrasound indentation system for measurement of tissue material properties using water jet compression.
    Lu MH; Zheng YP; Huang QH
    Ultrasound Med Biol; 2005 Jun; 31(6):817-26. PubMed ID: 15936497
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel ultrasound indentation system for measuring biomechanical properties of in vivo soft tissue.
    Han L; Noble JA; Burcher M
    Ultrasound Med Biol; 2003 Jun; 29(6):813-23. PubMed ID: 12837497
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear elasticity imaging: theory and phantom study.
    Erkamp RQ; Emelianov SY; Skovoroda AR; O'Donnell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):532-9. PubMed ID: 15217231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elasticity reconstruction from displacement and confidence measures of a multi-compressed ultrasound RF sequence.
    Li J; Cui Y; Kadour M; Noble JA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Feb; 55(2):319-26. PubMed ID: 18334339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validation of continuously tagged MRI for the measurement of dynamic 3D skeletal muscle tissue deformation.
    Moerman KM; Sprengers AM; Simms CK; Lamerichs RM; Stoker J; Nederveen AJ
    Med Phys; 2012 Apr; 39(4):1793-810. PubMed ID: 22482602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of a 15-MHz focused ultrasonic transducer and a 15-MHz unfocused ultrasonic transducer for clinical in-vivo skin-thickness measurements in human subjects.
    Dick RE; Faddis TN; Barr BG
    Biomed Instrum Technol; 1992; 26(1):48-51. PubMed ID: 1737184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Simulation of a Ring-Shaped Linear Array for Microultrasound Capsule Endoscopy.
    Lay HS; Cox BF; Seetohul V; Demore CEM; Cochran S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Apr; 65(4):589-599. PubMed ID: 29610089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the feasibility of remote palpation using acoustic radiation force.
    Nightingale KR; Palmeri ML; Nightingale RW; Trahey GE
    J Acoust Soc Am; 2001 Jul; 110(1):625-34. PubMed ID: 11508987
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic quantification of osseous displacements resulting from skin surface indentation loading of bovine para-spinal tissue.
    Kawchuk GN; Fauvel OR; Dmowski J
    Clin Biomech (Bristol, Avon); 2000 May; 15(4):228-33. PubMed ID: 10675662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lateral speckle tracking using synthetic lateral phase.
    Chen X; Zohdy MJ; Emelianov SY; O'Donell M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 May; 51(5):540-50. PubMed ID: 15217232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tissue stiffness imaging method using temporal variation of ultrasound speckle pattern.
    Jeong MK; Kwon SJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Apr; 50(4):457-60. PubMed ID: 12744402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shear elasticity probe for soft tissues with 1-D transient elastography.
    Sandrin L; Tanter M; Gennisson JL; Catheline S; Fink M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Apr; 49(4):436-46. PubMed ID: 11989699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design, fabrication and testing of a dual-band photoacoustic transducer.
    Liu JH; Wei CW; Sheu YL; Tasi YT; Wang YH; Li PC
    Ultrason Imaging; 2008 Oct; 30(4):217-27. PubMed ID: 19507675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo ultrasonic attenuation in cetacean soft tissues.
    Gray MD; Rogers PH
    J Acoust Soc Am; 2017 Feb; 141(2):EL83. PubMed ID: 28253670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Internal strain estimation for quantification of human heel pad elastic modulus: A phantom study.
    Holst K; Liebgott H; Wilhjelm JE; Nikolov S; Torp-Pedersen ST; Delachartre P; Jensen JA
    Ultrasonics; 2013 Feb; 53(2):439-46. PubMed ID: 23079052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.