BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 9483893)

  • 1. [Localization of central rhythm generator for tongue movements in sucking--analysis of isolated brainstem-spinal cord preparation from newborn rats].
    Jia L
    Kokubyo Gakkai Zasshi; 1997 Dec; 64(4):499-511. PubMed ID: 9483893
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of rhythmical ingestive activities of the trigeminal, facial, and hypoglossal motoneurons in in vitro CNS preparations isolated from rats and mice.
    Nakamura Y; Katakura N; Nakajima M
    J Med Dent Sci; 1999 Jun; 46(2):63-73. PubMed ID: 10805320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Brainstem segmental arrangement of sucking rhythm generators for trigeminal, facial and hypoglossal motoneurons].
    Nakajima M
    Kokubyo Gakkai Zasshi; 1999 Mar; 66(1):88-97. PubMed ID: 10332151
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhythm generation for food-ingestive movements.
    Nakamura Y; Katakura N; Nakajima M; Liu J
    Prog Brain Res; 2004; 143():97-103. PubMed ID: 14653154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of masticatory rhythm in the brainstem.
    Nakamura Y; Katakura N
    Neurosci Res; 1995 Aug; 23(1):1-19. PubMed ID: 7501294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of trigeminal respiratory motor activity in the brainstem.
    Koizumi H; Nomura K; Yokota Y; Enomoto A; Yamanishi T; Iida S; Ishihama K; Kogo M
    J Dent Res; 2009 Nov; 88(11):1048-53. PubMed ID: 19828895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coordination of NMDA-induced rhythmic activity in the trigeminal and hypoglossal nerves of neonatal mice in vitro.
    Ihara Y; Nakayama K; Nakamura S; Mochizuki A; Takahashi K; Inoue T
    Neurosci Res; 2013 Feb; 75(2):138-49. PubMed ID: 23183355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NMDA-induced rhythmical activity in XII nerve of isolated CNS from newborn rats.
    Katakura N; Jia L; Nakamura Y
    Neuroreport; 1995 Mar; 6(4):601-4. PubMed ID: 7605909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Respiratory activation of the genioglossus muscle involves both non-NMDA and NMDA glutamate receptors at the hypoglossal motor nucleus in vivo.
    Steenland HW; Liu H; Sood S; Liu X; Horner RL
    Neuroscience; 2006; 138(4):1407-24. PubMed ID: 16476523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal circuitry and synaptic organization of trigeminal proprioceptive afferents mediating tongue movement and jaw-tongue coordination via hypoglossal premotor neurons.
    Luo P; Zhang J; Yang R; Pendlebury W
    Eur J Neurosci; 2006 Jun; 23(12):3269-83. PubMed ID: 16820017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-methyl-D-aspartate triggers neonatal rat hypoglossal motoneurons in vitro to express rhythmic bursting with unusual Mg2+ sensitivity.
    Sharifullina E; Ostroumov K; Grandolfo M; Nistri A
    Neuroscience; 2008 Jun; 154(2):804-20. PubMed ID: 18468805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of medullary lesions on conditional pacemaker activity of neonatal rat hypoglossal motoneurons in vitro.
    Sakuma H; Katakura N; Shimozato K; Hiraba K
    Neurosci Res; 2013; 76(1-2):42-51. PubMed ID: 23542043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of microsectioning medulla, pH and temperature on rhythmical respiratory discharge activity of medulla-spinal preparation isolated from newborn rat].
    Hu DH; Wu ZH; Gao Y
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2001 Feb; 17(1):25-8. PubMed ID: 21171434
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhythmical oral-motor activity recorded in an in vitro brainstem preparation.
    Kogo M; Funk GD; Chandler SH
    Somatosens Mot Res; 1996; 13(1):39-48. PubMed ID: 8725647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ventrolateral lesions at the ponto-medullary junction and the effects of noradrenaline on respiratory rhythm in rat brainstem-spinal cord preparations.
    Ito Y; Saiki C; Makino M; Matsumoto S
    Life Sci; 2009 Aug; 85(7-8):322-6. PubMed ID: 19567253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential innervation of protruder and retractor muscles of the tongue in rat.
    Dobbins EG; Feldman JL
    J Comp Neurol; 1995 Jul; 357(3):376-94. PubMed ID: 7673474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Is NMDA receptor activation essential for the production of locomotor-like activity in the neonatal rat spinal cord?
    Cowley KC; Zaporozhets E; Maclean JN; Schmidt BJ
    J Neurophysiol; 2005 Dec; 94(6):3805-14. PubMed ID: 16120672
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors.
    Gestreau C; Dutschmann M; Obled S; Bianchi AL
    Respir Physiol Neurobiol; 2005 Jul; 147(2-3):159-76. PubMed ID: 15919245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural plasticity of neonatal hypoglossal nerve for effective suckling.
    Fukushima N; Yokouchi K; Kawagishi K; Kakegawa A; Ezawa N; Moriizumi T
    J Neurosci Res; 2007 Aug; 85(11):2518-26. PubMed ID: 17549755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of spontaneous mouth/tongue movement and related neural activity, and their repression in fetal mice lacking glutamate decarboxylase 67.
    Tsunekawa N; Arata A; Obata K
    Eur J Neurosci; 2005 Jan; 21(1):173-8. PubMed ID: 15654854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.