BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 9484241)

  • 1. Influence of excision of a methylene group from Glu-376 (Glu376-->Asp mutation) in the medium chain acyl-CoA dehydrogenase-catalyzed reaction.
    Peterson KL; Galitz DS; Srivastava DK
    Biochemistry; 1998 Feb; 37(6):1697-705. PubMed ID: 9484241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discriminatory influence of Glu-376-->Asp mutation in medium-chain acyl-CoA dehydrogenase on the binding of selected CoA-ligands: spectroscopic, thermodynamic, kinetic, and model building studies.
    Srivastava DK; Peterson KL
    Biochemistry; 1998 Jun; 37(23):8446-56. PubMed ID: 9622496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of ligand binding and catalysis in human liver medium-chain acyl-CoA dehydrogenase: comparative studies involving normal and 3'-dephosphorylated C8-CoAs and wild-type and Asn191 --> Ala (N191A) mutant enzymes.
    Peterson KL; Peterson KM; Srivastava DK
    Biochemistry; 1998 Sep; 37(36):12659-71. PubMed ID: 9730839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonic equilibria in the reductive half-reaction of the medium-chain acyl-CoA dehydrogenase.
    Rudik I; Ghisla S; Thorpe C
    Biochemistry; 1998 Jun; 37(23):8437-45. PubMed ID: 9622495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Beyond the proton abstracting role of Glu-376 in medium-chain acyl-CoA dehydrogenase: influence of Glu-376-->Gln substitution on ligand binding and catalysis.
    Gopalan KV; Srivastava DK
    Biochemistry; 2002 Apr; 41(14):4638-48. PubMed ID: 11926826
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Glu-376 --> Gln mutation on enthalpy and heat capacity changes for the binding of slightly altered ligands to medium chain acyl-CoA dehydrogenase.
    Peterson KM; Gopalan KV; Nandy A; Srivastava DK
    Protein Sci; 2001 Sep; 10(9):1822-34. PubMed ID: 11514673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ
    Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic consequences of accommodating a bulkier ligand at the active site of medium chain acyl-CoA dehydrogenase by creating a complementary enzyme site cavity.
    Peterson KM; Srivastava DK
    Biochemistry; 2000 Oct; 39(41):12678-87. PubMed ID: 11027148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidase activity of the acyl-CoA dehydrogenases.
    DuPlessis ER; Pellett J; Stankovich MT; Thorpe C
    Biochemistry; 1998 Jul; 37(29):10469-77. PubMed ID: 9671517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Substrate activation by acyl-CoA dehydrogenases: transition-state stabilization and pKs of involved functional groups.
    Vock P; Engst S; Eder M; Ghisla S
    Biochemistry; 1998 Feb; 37(7):1848-60. PubMed ID: 9485310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medium-long-chain chimeric human Acyl-CoA dehydrogenase: medium-chain enzyme with the active center base arrangement of long-chain Acyl-CoA dehydrogenase.
    Nandy A; Kieweg V; Kräutle FG; Vock P; Küchler B; Bross P; Kim JJ; Rasched I; Ghisla S
    Biochemistry; 1996 Sep; 35(38):12402-11. PubMed ID: 8823175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of alpha-CH-->NH substitution in C8-CoA on the kinetics of association and dissociation of ligands with medium chain acyl-CoA dehydrogenase.
    Peterson KM; Gopalan KV; Srivastava DK
    Biochemistry; 2000 Oct; 39(41):12659-70. PubMed ID: 11027146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox properties of human medium-chain acyl-CoA dehydrogenase, modulation by charged active-site amino acid residues.
    Mancini-Samuelson GJ; Kieweg V; Sabaj KM; Ghisla S; Stankovich MT
    Biochemistry; 1998 Oct; 37(41):14605-12. PubMed ID: 9772189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile and restricted pathways for the dissociation of octenoyl-CoA from the medium-chain fatty acyl-CoA dehydrogenase (MCAD)-FADH2-octenoyl-CoA charge-transfer complex: energetics and mechanism of suppression of the enzyme's oxidase activity.
    Kumar NR; Srivastava DK
    Biochemistry; 1995 Jul; 34(29):9434-43. PubMed ID: 7626613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of the wild type and the Glu376Gly/Thr255Glu mutant of human medium-chain acyl-CoA dehydrogenase: influence of the location of the catalytic base on substrate specificity.
    Lee HJ; Wang M; Paschke R; Nandy A; Ghisla S; Kim JJ
    Biochemistry; 1996 Sep; 35(38):12412-20. PubMed ID: 8823176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energetics of two-step binding of a chromophoric reaction product, trans-3-indoleacryloyl-CoA, to medium-chain acyl-coenzyme-A dehydrogenase.
    Qin L; Srivastava DK
    Biochemistry; 1998 Mar; 37(10):3499-508. PubMed ID: 9521671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recombinant human liver medium-chain acyl-CoA dehydrogenase: purification, characterization, and the mechanism of interactions with functionally diverse C8-CoA molecules.
    Peterson KL; Sergienko EE; Wu Y; Kumar NR; Strauss AW; Oleson AE; Muhonen WW; Shabb JB; Srivastava DK
    Biochemistry; 1995 Nov; 34(45):14942-53. PubMed ID: 7578106
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
    Engst S; Vock P; Wang M; Kim JJ; Ghisla S
    Biochemistry; 1999 Jan; 38(1):257-67. PubMed ID: 9890906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of a Glu370Asp mutation in glutaryl-CoA dehydrogenase on proton transfer to the dienolate intermediate.
    Rao KS; Fu Z; Albro M; Narayanan B; Baddam S; Lee HJ; Kim JJ; Frerman FE
    Biochemistry; 2007 Dec; 46(50):14468-77. PubMed ID: 18020372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioester enolate stabilization in the acyl-CoA dehydrogenases: the effect of 5-deaza-flavin substitution.
    Rudik I; Thorpe C
    Arch Biochem Biophys; 2001 Aug; 392(2):341-8. PubMed ID: 11488611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.