BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 9484549)

  • 1. Different sensitivities to paraoxon of brain and serum cholinesterases from Pacu, an indigenous Brazilian fish.
    Bastos VL; Rossini A; Pinto LF; de Lima LM; Ceccarelli PS; Coelho MG; Bastos JC
    Bull Environ Contam Toxicol; 1998 Jan; 60(1):1-8. PubMed ID: 9484549
    [No Abstract]   [Full Text] [Related]  

  • 2. Bioconcentration and Acute Intoxication of Brazilian Freshwater Fishes by the Methyl Parathion Organophosphate Pesticide.
    de Salles JB; Lopes RM; de Salles CM; Cassano VP; de Oliveira MM; Bastos VL; Bastos JC
    Biomed Res Int; 2015; 2015():197196. PubMed ID: 26339593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cholinesterase activity of muscle tissue from freshwater fishes: characterization and sensitivity analysis to the organophosphate methyl-paraoxon.
    Lopes RM; Filho MV; de Salles JB; Bastos VL; Bastos JC
    Environ Toxicol Chem; 2014 Jun; 33(6):1331-6. PubMed ID: 24648156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Cholinesterase inhibitor test--report on the ring test].
    Beutler HO
    Schriftenr Ver Wasser Boden Lufthyg; 1992; 89():811-9. PubMed ID: 1307843
    [No Abstract]   [Full Text] [Related]  

  • 5. Response of brain and liver cholinesterases of Nile tilapia, Oreochromis niloticus, to single and multiple exposures of chlorpyrifos and carbosulfan.
    Chandrasekera LK; Pathiratne A
    Bull Environ Contam Toxicol; 2005 Dec; 75(6):1228-33. PubMed ID: 16402316
    [No Abstract]   [Full Text] [Related]  

  • 6. Importance of cholinesterase kinetic parameters in environmental monitoring using estuarine fish.
    Tortelli V; Colares EP; Robaldo RB; Nery LE; Pinho GL; Bianchini A; Monserrat JM
    Chemosphere; 2006 Oct; 65(4):560-6. PubMed ID: 16643981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of biological and technical factors on brain and muscle cholinesterases in Nile tilapia, Oreochromis niloticus: implications for biomonitoring neurotoxic contaminations.
    Pathiratne A; Chandrasekera LW; De Seram PK
    Arch Environ Contam Toxicol; 2008 Feb; 54(2):309-17. PubMed ID: 17726623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak inhibitors protect cholinesterases from strong inhibitors (paraoxon): in vitro effect of ranitidine.
    Petroianu GA; Arafat K; Schmitt A; Hasan MY
    J Appl Toxicol; 2005; 25(1):60-7. PubMed ID: 15669026
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating reptile exposure to cholinesterase-inhibiting agrochemicals by serum butyrylcholinesterase activity.
    Sanchez-Hernandez JC
    Environ Toxicol Chem; 2003 Feb; 22(2):296-301. PubMed ID: 12558160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat.
    Milatovic D; Dettbarn WD
    Toxicol Appl Pharmacol; 1996 Jan; 136(1):20-8. PubMed ID: 8560475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regional brain cholinesterase activity in rats injected intraperitoneally with anatoxin-a(s) or paraoxon.
    Cook WO; Dellinger JA; Singh SS; Dahlem AM; Carmichael WW; Beasley VR
    Toxicol Lett; 1989 Oct; 49(1):29-34. PubMed ID: 2815113
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recovery of brain cholinesterases of brown-headed cowbirds from organophosphorus intoxication: effect of environmental temperature.
    Brunet R; McDuff J
    Bull Environ Contam Toxicol; 1997 Aug; 59(2):285-91. PubMed ID: 9211701
    [No Abstract]   [Full Text] [Related]  

  • 13. Cholinesterases characterization of three tropical fish species, and their sensitivity towards specific contaminants.
    Pereira BVR; Silva-Zacarin ECM; Costa MJ; Dos Santos ACA; do Carmo JB; Nunes B
    Ecotoxicol Environ Saf; 2019 May; 173():482-493. PubMed ID: 30802737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the correlation between blood cholinesterase inhibition and 'target tissue' inhibition in pesticide-treated rats.
    Padilla S; Wilson VZ; Bushnell PJ
    Toxicology; 1994 Sep; 92(1-3):11-25. PubMed ID: 7524196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscular and brain cholinesterase sensitivities to azinphos methyl and carbaryl in the juvenile rainbow trout Oncorhynchus mykiss.
    Ferrari A; Venturino A; Pechén de D'Angelo AM
    Comp Biochem Physiol C Toxicol Pharmacol; 2007 Sep; 146(3):308-13. PubMed ID: 17509940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation of brain and serum cholinesterase activity with age in wild small mammals.
    Fishwick SK; Shore RF; Turk A; Sparks TH
    Bull Environ Contam Toxicol; 1996 Apr; 56(4):604-11. PubMed ID: 8645917
    [No Abstract]   [Full Text] [Related]  

  • 17. A physiologically based pharmacokinetic and pharmacodynamic model for paraoxon in rainbow trout.
    Abbas R; Hayton WL
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):192-201. PubMed ID: 9221837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neurotoxicity of acute and repeated treatments of tabun, paraoxon, diisopropyl fluorophosphate and isofenphos to the hen.
    Henderson JD; Higgins RJ; Dacre JC; Wilson BW
    Toxicology; 1992; 72(2):117-29. PubMed ID: 1566275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased susceptibility to adult paraoxon exposure in mice neonatally exposed to nicotine.
    Ankarberg E; Fredriksson A; Eriksson P
    Toxicol Sci; 2004 Dec; 82(2):555-61. PubMed ID: 15356346
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of plasma cholinesterase and acute toxicity of monocrotophos in a neotropical fish Prochilodus lineatus (pisces, curimatidae).
    Parma De Croux MJ; Loteste A; Cazenave J
    Bull Environ Contam Toxicol; 2002 Sep; 69(3):356-63. PubMed ID: 12177756
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.