These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9484709)

  • 1. Molecular diversity of visual pigments in the butterfly Papilio glaucus.
    Briscoe AD
    Naturwissenschaften; 1998 Jan; 85(1):33-5. PubMed ID: 9484709
    [No Abstract]   [Full Text] [Related]  

  • 2. Six opsins from the butterfly Papilio glaucus: molecular phylogenetic evidence for paralogous origins of red-sensitive visual pigments in insects.
    Briscoe AD
    J Mol Evol; 2000 Aug; 51(2):110-21. PubMed ID: 10948267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regeneration of ultraviolet pigments of vertebrates.
    Yokoyama S; Radlwimmer FB; Kawamura S
    FEBS Lett; 1998 Feb; 423(2):155-8. PubMed ID: 9512349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
    Wakakuwa M; Terakita A; Koyanagi M; Stavenga DG; Shichida Y; Arikawa K
    PLoS One; 2010 Nov; 5(11):e15015. PubMed ID: 21124838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opsin cDNA sequences of a UV and green rhodopsin of the satyrine butterfly Bicyclus anynana.
    Vanhoutte KJ; Eggen BJ; Janssen JJ; Stavenga DG
    Insect Biochem Mol Biol; 2002 Nov; 32(11):1383-90. PubMed ID: 12539740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive evolution of color vision of the Comoran coelacanth (Latimeria chalumnae).
    Yokoyama S; Zhang H; Radlwimmer FB; Blow NS
    Proc Natl Acad Sci U S A; 1999 May; 96(11):6279-84. PubMed ID: 10339578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intron splice sites of Papilio glaucus PglRh3 corroborate insect opsin phylogeny.
    Briscoe AD
    Gene; 1999 Apr; 230(1):101-9. PubMed ID: 10196479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amino acid replacements and wavelength absorption of visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1995 Jan; 12(1):53-61. PubMed ID: 7877496
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homology modeling suggests a functional role for parallel amino acid substitutions between bee and butterfly red- and green-sensitive opsins.
    Briscoe AD
    Mol Biol Evol; 2002 Jun; 19(6):983-6. PubMed ID: 12032257
    [No Abstract]   [Full Text] [Related]  

  • 10. Molecular evolution of the cone visual pigments in the pure rod-retina of the nocturnal gecko, Gekko gekko.
    Yokoyama S; Blow NS
    Gene; 2001 Oct; 276(1-2):117-25. PubMed ID: 11591478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reconstructing the ancestral butterfly eye: focus on the opsins.
    Briscoe AD
    J Exp Biol; 2008 Jun; 211(Pt 11):1805-13. PubMed ID: 18490396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional diversification of lepidopteran opsins following gene duplication.
    Briscoe AD
    Mol Biol Evol; 2001 Dec; 18(12):2270-9. PubMed ID: 11719576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal Attachment Instability Is Diversified among Mammalian Melanopsins.
    Tsukamoto H; Kubo Y; Farrens DL; Koyanagi M; Terakita A; Furutani Y
    J Biol Chem; 2015 Nov; 290(45):27176-27187. PubMed ID: 26416885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tertiary structure and spectral tuning of UV and violet pigments in vertebrates.
    Yokoyama S; Starmer WT; Takahashi Y; Tada T
    Gene; 2006 Jan; 365():95-103. PubMed ID: 16343816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution.
    Deeb SS; Wakefield MJ; Tada T; Marotte L; Yokoyama S; Marshall Graves JA
    Mol Biol Evol; 2003 Oct; 20(10):1642-9. PubMed ID: 12885969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-sea and pelagic rod visual pigments identified in the mysticete whales.
    Bischoff N; Nickle B; Cronin TW; Velasquez S; Fasick JI
    Vis Neurosci; 2012 Mar; 29(2):95-103. PubMed ID: 22414424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet and violet receptors express identical mRNA encoding an ultraviolet-absorbing opsin: identification and histological localization of two mRNAs encoding short-wavelength-absorbing opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Ozaki K; Arikawa K
    J Exp Biol; 2000 Oct; 203(Pt 19):2887-94. PubMed ID: 10976026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two visual pigments in a single photoreceptor cell: identification and histological localization of three mRNAs encoding visual pigment opsins in the retina of the butterfly Papilio xuthus.
    Kitamoto J; Sakamoto K; Ozaki K; Mishina Y; Arikawa K
    J Exp Biol; 1998 May; 201(Pt 9):1255-61. PubMed ID: 9547302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectral tuning and evolution of short wave-sensitive cone pigments in cottoid fish from Lake Baikal.
    Cowing JA; Poopalasundaram S; Wilkie SE; Bowmaker JK; Hunt DM
    Biochemistry; 2002 May; 41(19):6019-25. PubMed ID: 11993996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary analysis of rhodopsin and cone pigments: connecting the three-dimensional structure with spectral tuning and signal transfer.
    Teller DC; Stenkamp RE; Palczewski K
    FEBS Lett; 2003 Nov; 555(1):151-9. PubMed ID: 14630336
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.