These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 9485067)

  • 41. Age, CAG repeat length, and clinical progression in Huntington's disease.
    Rosenblatt A; Kumar BV; Mo A; Welsh CS; Margolis RL; Ross CA
    Mov Disord; 2012 Feb; 27(2):272-6. PubMed ID: 22173986
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dopamine receptor properties in Parkinson's disease and Huntington's chorea evaluated by positron emission tomography using 11C-N-methyl-spiperone.
    Hägglund J; Aquilonius SM; Eckernäs SA; Hartvig P; Lundquist H; Gullberg P; Långström B
    Acta Neurol Scand; 1987 Feb; 75(2):87-94. PubMed ID: 2953165
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The relationship between CAG repeat length and clinical progression in Huntington's disease.
    Ravina B; Romer M; Constantinescu R; Biglan K; Brocht A; Kieburtz K; Shoulson I; McDermott MP
    Mov Disord; 2008 Jul; 23(9):1223-7. PubMed ID: 18512767
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trinucleotide (CAG) repeat length is positively correlated with the degree of DNA fragmentation in Huntington's disease striatum.
    Butterworth NJ; Williams L; Bullock JY; Love DR; Faull RL; Dragunow M
    Neuroscience; 1998 Nov; 87(1):49-53. PubMed ID: 9722140
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Positron emission tomography demonstrates dopamine D2 receptor supersensitivity in the striatum of patients with early Parkinson's disease.
    Rinne UK; Laihinen A; Rinne JO; Någren K; Bergman J; Ruotsalainen U
    Mov Disord; 1990; 5(1):55-9. PubMed ID: 2136932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. [18F]desmethoxyfallypride as a novel PET radiotracer for quantitative in vivo dopamine D2/D3 receptor imaging in rat models of neurodegenerative diseases.
    Döbrössy MD; Braun F; Klein S; Garcia J; Langen KJ; Weber WA; Nikkhah G; Meyer PT
    Nucl Med Biol; 2012 Oct; 39(7):1077-80. PubMed ID: 22591915
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Striatal molecular alterations in HD gene carriers: a systematic review and meta-analysis of PET studies.
    Niccolini F; Pagano G; Fusar-Poli P; Wood A; Mrzljak L; Sampaio C; Politis M
    J Neurol Neurosurg Psychiatry; 2018 Feb; 89(2):185-196. PubMed ID: 28889093
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Trinucleotide repeat length and rate of progression of Huntington's disease.
    Illarioshkin SN; Igarashi S; Onodera O; Markova ED; Nikolskaya NN; Tanaka H; Chabrashwili TZ; Insarova NG; Endo K; Ivanova-Smolenskaya IA
    Ann Neurol; 1994 Oct; 36(4):630-5. PubMed ID: 7944295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Reduced basal ganglia blood flow and volume in pre-symptomatic, gene-tested persons at-risk for Huntington's disease.
    Harris GJ; Codori AM; Lewis RF; Schmidt E; Bedi A; Brandt J
    Brain; 1999 Sep; 122 ( Pt 9)():1667-78. PubMed ID: 10468506
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Decrease in human striatal dopamine D2 receptor density with age: a PET study with [11C]raclopride.
    Rinne JO; Hietala J; Ruotsalainen U; Säkö E; Laihinen A; Någren K; Lehikoinen P; Oikonen V; Syvälahti E
    J Cereb Blood Flow Metab; 1993 Mar; 13(2):310-4. PubMed ID: 8436624
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 1H NMR spectroscopy studies of Huntington's disease: correlations with CAG repeat numbers.
    Jenkins BG; Rosas HD; Chen YC; Makabe T; Myers R; MacDonald M; Rosen BR; Beal MF; Koroshetz WJ
    Neurology; 1998 May; 50(5):1357-65. PubMed ID: 9595987
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metabolic network as a progression biomarker of premanifest Huntington's disease.
    Tang CC; Feigin A; Ma Y; Habeck C; Paulsen JS; Leenders KL; Teune LK; van Oostrom JC; Guttman M; Dhawan V; Eidelberg D
    J Clin Invest; 2013 Sep; 123(9):4076-88. PubMed ID: 23985564
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cognitive decline in Huntington's disease expansion gene carriers.
    Baake V; Reijntjes RHAM; Dumas EM; Thompson JC; ; Roos RAC
    Cortex; 2017 Oct; 95():51-62. PubMed ID: 28843844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Local cerebral glucose utilization in symptomatic and presymptomatic Huntington's disease.
    Kuhl DE; Markham CH; Metter EJ; Riege WH; Phelps ME; Mazziotta JC
    Res Publ Assoc Res Nerv Ment Dis; 1985; 63():199-209. PubMed ID: 3161165
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The relationship between CAG repeat length and age of onset differs for Huntington's disease patients with juvenile onset or adult onset.
    Andresen JM; Gayán J; Djoussé L; Roberts S; Brocklebank D; Cherny SS; ; ; Cardon LR; Gusella JF; MacDonald ME; Myers RH; Housman DE; Wexler NS
    Ann Hum Genet; 2007 May; 71(Pt 3):295-301. PubMed ID: 17181545
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping of central D2 dopamine receptors in man using [11C]raclopride: PET with anatomic standardization technique.
    Ito H; Okubo Y; Halldin C; Farde L
    Neuroimage; 1999 Feb; 9(2):235-42. PubMed ID: 9927552
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploring the correlates of intermediate CAG repeats in Huntington disease.
    Ha AD; Jankovic J
    Postgrad Med; 2011 Sep; 123(5):116-21. PubMed ID: 21904093
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 11C-diprenorphine binding in Huntington's disease: a comparison of region of interest analysis with statistical parametric mapping.
    Weeks RA; Cunningham VJ; Piccini P; Waters S; Harding AE; Brooks DJ
    J Cereb Blood Flow Metab; 1997 Sep; 17(9):943-9. PubMed ID: 9307607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Normal caudate glucose metabolism in persons at risk for Huntington's disease.
    Young AB; Penney JB; Starosta-Rubinstein S; Markel D; Berent S; Rothley J; Betley A; Hichwa R
    Arch Neurol; 1987 Mar; 44(3):254-7. PubMed ID: 2950844
    [TBL] [Abstract][Full Text] [Related]  

  • 60. PET Molecular Imaging of Phosphodiesterase 10A: An Early Biomarker of Huntington's Disease Progression.
    Fazio P; Fitzer-Attas CJ; Mrzljak L; Bronzova J; Nag S; Warner JH; Landwehrmeyer B; Al-Tawil N; Halldin C; Forsberg A; Ware J; Dilda V; Wood A; Sampaio C; Varrone A;
    Mov Disord; 2020 Apr; 35(4):606-615. PubMed ID: 31967355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.