BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 9485307)

  • 1. Clamp subunit dissociation dictates bacteriophage T4 DNA polymerase holoenzyme disassembly.
    Soumillion P; Sexton DJ; Benkovic SJ
    Biochemistry; 1998 Feb; 37(7):1819-27. PubMed ID: 9485307
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dissecting the order of bacteriophage T4 DNA polymerase holoenzyme assembly.
    Sexton DJ; Kaboord BF; Berdis AJ; Carver TE; Benkovic SJ
    Biochemistry; 1998 May; 37(21):7749-56. PubMed ID: 9601035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence monitoring of T4 polymerase holoenzyme accessory protein interactions during loading of the sliding clamp onto the template-primer junction.
    Latham GJ; Pietroni P; Dong F; Young MC; von Hippel PH
    J Mol Biol; 1996 Dec; 264(3):426-39. PubMed ID: 8969295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissection of the ATP-driven reaction cycle of the bacteriophage T4 DNA replication processivity clamp loading system.
    Pietroni P; Young MC; Latham GJ; von Hippel PH
    J Mol Biol; 2001 Jun; 309(4):869-91. PubMed ID: 11399065
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sliding clamp of the bacteriophage T4 polymerase has open and closed subunit interfaces in solution.
    Alley SC; Shier VK; Abel-Santos E; Sexton DJ; Soumillion P; Benkovic SJ
    Biochemistry; 1999 Jun; 38(24):7696-709. PubMed ID: 10387009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of adenosine 5'-triphosphate hydrolysis in the assembly of the bacteriophage T4 DNA replication holoenzyme complex.
    Berdis AJ; Benkovic SJ
    Biochemistry; 1996 Jul; 35(28):9253-65. PubMed ID: 8703931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociation of bacteriophage T4 DNA polymerase and its processivity clamp after completion of Okazaki fragment synthesis.
    Carver TE; Sexton DJ; Benkovic SJ
    Biochemistry; 1997 Nov; 36(47):14409-17. PubMed ID: 9398159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking sliding clamp opening and closing during bacteriophage T4 DNA polymerase holoenzyme assembly.
    Alley SC; Abel-Santos E; Benkovic SJ
    Biochemistry; 2000 Mar; 39(11):3076-90. PubMed ID: 10715129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of bacteriophage T4 DNA holoenzyme assembly: the 44/62 protein acts as a molecular motor.
    Berdis AJ; Benkovic SJ
    Biochemistry; 1997 Mar; 36(10):2733-43. PubMed ID: 9062100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An alternative clamp loading pathway via the T4 clamp loader gp44/62-DNA complex.
    Zhuang Z; Berdis AJ; Benkovic SJ
    Biochemistry; 2006 Jul; 45(26):7976-89. PubMed ID: 16800623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic mechanism of formation of the bacteriophage T4 DNA polymerase sliding clamp.
    Young MC; Weitzel SE; von Hippel PH
    J Mol Biol; 1996 Dec; 264(3):440-52. PubMed ID: 8969296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Examination of the role of the clamp-loader and ATP hydrolysis in the formation of the bacteriophage T4 polymerase holoenzyme.
    Trakselis MA; Berdis AJ; Benkovic SJ
    J Mol Biol; 2003 Feb; 326(2):435-51. PubMed ID: 12559912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual role of the 44/62 protein as a matchmaker protein and DNA polymerase chaperone during assembly of the bacteriophage T4 holoenzyme complex.
    Kaboord BF; Benkovic SJ
    Biochemistry; 1996 Jan; 35(3):1084-92. PubMed ID: 8547244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using 2-aminopurine fluorescence to detect bacteriophage T4 DNA polymerase-DNA complexes that are important for primer extension and proofreading reactions.
    Hariharan C; Reha-Krantz LJ
    Biochemistry; 2005 Dec; 44(48):15674-84. PubMed ID: 16313170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the solution structure of the T4 sliding clamp (gp45).
    Millar D; Trakselis MA; Benkovic SJ
    Biochemistry; 2004 Oct; 43(40):12723-7. PubMed ID: 15461444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule investigation of the T4 bacteriophage DNA polymerase holoenzyme: multiple pathways of holoenzyme formation.
    Smiley RD; Zhuang Z; Benkovic SJ; Hammes GG
    Biochemistry; 2006 Jul; 45(26):7990-7. PubMed ID: 16800624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating a dynamic picture of the sliding clamp during T4 DNA polymerase holoenzyme assembly by using fluorescence resonance energy transfer.
    Trakselis MA; Alley SC; Abel-Santos E; Benkovic SJ
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8368-75. PubMed ID: 11459977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of the DNA polymerase processivity factor of T4 bacteriophage.
    Moarefi I; Jeruzalmi D; Turner J; O'Donnell M; Kuriyan J
    J Mol Biol; 2000 Mar; 296(5):1215-23. PubMed ID: 10698628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.