BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 9485321)

  • 1. A collapsed intermediate with nonnative packing of hydrophobic residues in the folding of TEM-1 beta-lactamase.
    Vanhove M; Lejeune A; Guillaume G; Virden R; Pain RH; Schmid FX; Frère JM
    Biochemistry; 1998 Feb; 37(7):1941-50. PubMed ID: 9485321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The slow folding reaction of barstar: the core tryptophan region attains tight packing before substantial secondary and tertiary structure formation and final compaction of the polypeptide chain.
    Sridevi K; Juneja J; Bhuyan AK; Krishnamoorthy G; Udgaonkar JB
    J Mol Biol; 2000 Sep; 302(2):479-95. PubMed ID: 10970747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of nonpolar surfaces in the folding of Escherichia coli dihydrofolate reductase detected by 1-anilinonaphthalene-8-sulfonate binding.
    Jones BE; Jennings PA; Pierre RA; Matthews CR
    Biochemistry; 1994 Dec; 33(51):15250-8. PubMed ID: 7803387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the folding pathway of the TEM-1 beta-lactamase.
    Vanhove M; Raquet X; Frère JM
    Proteins; 1995 Jun; 22(2):110-8. PubMed ID: 7567959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Folding and aggregation of TEM beta-lactamase: analogies with the formation of inclusion bodies in Escherichia coli.
    Georgiou G; Valax P; Ostermeier M; Horowitz PM
    Protein Sci; 1994 Nov; 3(11):1953-60. PubMed ID: 7703842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence energy transfer indicates similar transient and equilibrium intermediates in staphylococcal nuclease folding.
    Nishimura C; Riley R; Eastman P; Fink AL
    J Mol Biol; 2000 Jun; 299(4):1133-46. PubMed ID: 10843864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-tryptophan mutants of monomeric tryptophan repressor: optical spectroscopy reveals nonnative structure in a model for an early folding intermediate.
    Shao X; Matthews CR
    Biochemistry; 1998 May; 37(21):7850-8. PubMed ID: 9601046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proline isomerization-independent accumulation of an early intermediate and heterogeneity of the folding pathways of a mixed alpha/beta protein, Escherichia coli thioredoxin.
    Georgescu RE; Li JH; Goldberg ME; Tasayco ML; Chaffotte AF
    Biochemistry; 1998 Jul; 37(28):10286-97. PubMed ID: 9665737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beta-lactamases as models for protein-folding studies.
    Vanhove M; Lejeune A; Pain RH
    Cell Mol Life Sci; 1998 Apr; 54(4):372-7. PubMed ID: 9614975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding kinetics of staphylococcal nuclease studied by tryptophan engineering and rapid mixing methods.
    Maki K; Cheng H; Dolgikh DA; Roder H
    J Mol Biol; 2007 Apr; 368(1):244-55. PubMed ID: 17331534
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Local and global dynamics during the folding of Escherichia coli dihydrofolate reductase by time-resolved fluorescence spectroscopy.
    Jones BE; Beechem JM; Matthews CR
    Biochemistry; 1995 Feb; 34(6):1867-77. PubMed ID: 7849046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-induced structural change of a multi-tryptophan protein MPT63 with immunoglobulin-like fold: identification of perturbed tryptophan residue/residues.
    Mukherjee M; Ghosh R; Chattopadhyay K; Ghosh S
    J Biomol Struct Dyn; 2015; 33(10):2145-60. PubMed ID: 25599137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence of native single-Trp mutants in the lactose permease from Escherichia coli: structural properties and evidence for a substrate-induced conformational change.
    Weitzman C; Consler TG; Kaback HR
    Protein Sci; 1995 Nov; 4(11):2310-8. PubMed ID: 8563627
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The burst-phase intermediate in the refolding of beta-lactoglobulin studied by stopped-flow circular dichroism and absorption spectroscopy.
    Kuwajima K; Yamaya H; Sugai S
    J Mol Biol; 1996 Dec; 264(4):806-22. PubMed ID: 8980687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early events during folding of wild-type staphylococcal nuclease and a single-tryptophan variant studied by ultrarapid mixing.
    Maki K; Cheng H; Dolgikh DA; Shastry MC; Roder H
    J Mol Biol; 2004 Apr; 338(2):383-400. PubMed ID: 15066439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An insight into the biophysical characterization of different states of cefotaxime hydrolyzing β-lactamase 15 (CTX-M-15).
    Rehman MT; Faheem M; Khan AU
    J Biomol Struct Dyn; 2015; 33(3):625-38. PubMed ID: 24650131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competition between DsbA-mediated oxidation and conformational folding of RTEM1 beta-lactamase.
    Frech C; Wunderlich M; Glockshuber R; Schmid FX
    Biochemistry; 1996 Sep; 35(35):11386-95. PubMed ID: 8784194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.