These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 9485323)
1. Importance of intramembrane carboxylic acids for occlusion of K+ ions at equilibrium in renal Na,K-ATPase. Nielsen JM; Pedersen PA; Karlish SJ; Jorgensen PL Biochemistry; 1998 Feb; 37(7):1961-8. PubMed ID: 9485323 [TBL] [Abstract][Full Text] [Related]
2. Structure-function relationships based on ATP binding and cation occlusion at equilibrium in Na,K-ATPase. Jorgensen PL; Nielsen JM; Rasmussen JH; Pedersen PA Acta Physiol Scand Suppl; 1998 Aug; 643():79-87. PubMed ID: 9789549 [TBL] [Abstract][Full Text] [Related]
3. Consequences of mutations to the phosphorylation site of the alpha-subunit of Na, K-ATPase for ATP binding and E1-E2 conformational equilibrium. Pedersen PA; Rasmussen JH; Jørgensen PL Biochemistry; 1996 Dec; 35(50):16085-93. PubMed ID: 8973179 [TBL] [Abstract][Full Text] [Related]
4. Mutation to the glutamate in the fourth membrane segment of Na+,K+-ATPase and Ca2+-ATPase affects cation binding from both sides of the membrane and destabilizes the occluded enzyme forms. Vilsen B; Andersen JP Biochemistry; 1998 Aug; 37(31):10961-71. PubMed ID: 9692989 [TBL] [Abstract][Full Text] [Related]
5. Nonpolar amino acid substitutions of potential cation binding residues glu-955 and glu-956 of the rat alpha 1 isoform of Na+, K(+)-ATPase. Van Huysse JW; Lingrel JB Cell Mol Biol Res; 1993; 39(5):497-507. PubMed ID: 8173592 [TBL] [Abstract][Full Text] [Related]
6. Functional consequences of substitutions of the carboxyl residue glutamate 779 of the Na,K-ATPase. Feng J; Lingrel JB Cell Mol Biol Res; 1995; 41(1):29-37. PubMed ID: 7550450 [TBL] [Abstract][Full Text] [Related]
7. Glutamic acid 472 and lysine 480 of the sodium pump alpha 1 subunit are essential for activity. Their conservation in pyrophosphatases suggests their involvement in recognition of ATP phosphates. Scheiner-Bobis G; Schreiber S Biochemistry; 1999 Jul; 38(29):9198-208. PubMed ID: 10413494 [TBL] [Abstract][Full Text] [Related]
8. Structure-function relationships of Na(+), K(+), ATP, or Mg(2+) binding and energy transduction in Na,K-ATPase. Jorgensen PL; Pedersen PA Biochim Biophys Acta; 2001 May; 1505(1):57-74. PubMed ID: 11248189 [TBL] [Abstract][Full Text] [Related]
9. Identification of Asp804 and Asp808 as Na+ and K+ coordinating residues in alpha-subunit of renal Na,K-ATPase. Pedersen PA; Rasmussen JH; Nielsen JM; Jorgensen PL FEBS Lett; 1997 Jan; 400(2):206-10. PubMed ID: 9001399 [TBL] [Abstract][Full Text] [Related]
10. Mutant Phe788 --> Leu of the Na+,K+-ATPase is inhibited by micromolar concentrations of potassium and exhibits high Na+-ATPase activity at low sodium concentrations. Vilsen B Biochemistry; 1999 Aug; 38(35):11389-400. PubMed ID: 10471289 [TBL] [Abstract][Full Text] [Related]
11. Evidence for tryptophan residues in the cation transport path of the Na(+),K(+)-ATPase. Yudowski GA; Bar Shimon M; Tal DM; González-Lebrero RM; Rossi RC; Garrahan PJ; Beaugé LA; Karlish SJ Biochemistry; 2003 Sep; 42(34):10212-22. PubMed ID: 12939149 [TBL] [Abstract][Full Text] [Related]
12. Structure-function relationships of E1-E2 transitions and cation binding in Na,K-pump protein. Jorgensen PL; Nielsen JM; Rasmussen JH; Pedersen PA Biochim Biophys Acta; 1998 Jun; 1365(1-2):65-70. PubMed ID: 9693723 [TBL] [Abstract][Full Text] [Related]
13. Alanine scanning mutagenesis of oxygen-containing amino acids in the transmembrane region of the Na,K-ATPase. Argüello JM; Whitis J; Lingrel JB Arch Biochem Biophys; 1999 Jul; 367(2):341-7. PubMed ID: 10395753 [TBL] [Abstract][Full Text] [Related]
14. TNP-8N3-ADP photoaffinity labeling of two Na,K-ATPase sequences under separate Na+ plus K+ control. Ward DG; Taylor M; Lilley KS; Cavieres JD Biochemistry; 2006 Mar; 45(10):3460-71. PubMed ID: 16519541 [TBL] [Abstract][Full Text] [Related]
15. Importance of Na,K-ATPase residue alpha 1-Arg544 in the segment Arg544-Asp567 for high-affinity binding of ATP, ADP, or MgATP. Jacobsen MD; Pedersen PA; Jorgensen PL Biochemistry; 2002 Feb; 41(5):1451-6. PubMed ID: 11814337 [TBL] [Abstract][Full Text] [Related]
16. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity. Sánchez G; Blanco G Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763 [TBL] [Abstract][Full Text] [Related]
18. Functional domains of Na,K-ATPase; conformational transitions in the alpha-subunit and ion occlusion. Jørgensen PL Acta Physiol Scand Suppl; 1992; 607():89-95. PubMed ID: 1333164 [TBL] [Abstract][Full Text] [Related]
19. D443 of the N domain of Na+,K+-ATPase interacts with the ATP-Mg2+ complex, possibly via a second Mg2+ ion. Strugatsky D; Gottschalk KE; Goldshleger R; Karlish SJ Biochemistry; 2005 Dec; 44(49):15961-9. PubMed ID: 16331955 [TBL] [Abstract][Full Text] [Related]
20. Contribution to Tl+, K+, and Na+ binding of Asn776, Ser775, Thr774, Thr772, and Tyr771 in cytoplasmic part of fifth transmembrane segment in alpha-subunit of renal Na,K-ATPase. Pedersen PA; Nielsen JM; Rasmussen JH; Jorgensen PL Biochemistry; 1998 Dec; 37(51):17818-27. PubMed ID: 9922148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]