These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 9485380)

  • 1. Quantitative studies on the melittin-induced leakage mechanism of lipid vesicles.
    Rex S; Schwarz G
    Biochemistry; 1998 Feb; 37(8):2336-45. PubMed ID: 9485380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pore formation induced by the peptide melittin in different lipid vesicle membranes.
    Rex S
    Biophys Chem; 1996 Jan; 58(1-2):75-85. PubMed ID: 8679920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual-probe fluorescence method to examine selective perturbations of membrane permeability by melittin.
    El Jastimi R; Lafleur M
    Biospectroscopy; 1999; 5(3):133-40. PubMed ID: 10380080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pore kinetics reflected in the dequenching of a lipid vesicle entrapped fluorescent dye.
    Schwarz G; Arbuzova A
    Biochim Biophys Acta; 1995 Oct; 1239(1):51-7. PubMed ID: 7548144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pore formation and translocation of melittin.
    Matsuzaki K; Yoneyama S; Miyajima K
    Biophys J; 1997 Aug; 73(2):831-8. PubMed ID: 9251799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sizing membrane pores in lipid vesicles by leakage of co-encapsulated markers: pore formation by melittin.
    Ladokhin AS; Selsted ME; White SH
    Biophys J; 1997 Apr; 72(4):1762-6. PubMed ID: 9083680
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of melittin induced pore formation in the membrane of lipid vesicles.
    Schwarz G; Zong RT; Popescu T
    Biochim Biophys Acta; 1992 Sep; 1110(1):97-104. PubMed ID: 1390840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of vesicle leakage induced by melittin.
    Benachir T; Lafleur M
    Biochim Biophys Acta; 1995 May; 1235(2):452-60. PubMed ID: 7756355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of dye efflux and lipid flip-flop induced by delta-lysin in phosphatidylcholine vesicles and the mechanism of graded release by amphipathic, alpha-helical peptides.
    Pokorny A; Almeida PF
    Biochemistry; 2004 Jul; 43(27):8846-57. PubMed ID: 15236593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1.
    Lyu Y; Fitriyanti M; Narsimhan G
    Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of toroidal pore and oligomerization by melittin using transmission electron microscopy.
    Park SC; Kim JY; Shin SO; Jeong CY; Kim MH; Shin SY; Cheong GW; Park Y; Hahm KS
    Biochem Biophys Res Commun; 2006 Apr; 343(1):222-8. PubMed ID: 16540094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton permeation into single vesicles occurs via a sequential two-step mechanism and is heterogeneous.
    Kuyper CL; Kuo JS; Mutch SA; Chiu DT
    J Am Chem Soc; 2006 Mar; 128(10):3233-40. PubMed ID: 16522104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of lipid headgroup composition on the interaction between melittin and lipid bilayers.
    Strömstedt AA; Wessman P; Ringstad L; Edwards K; Malmsten M
    J Colloid Interface Sci; 2007 Jul; 311(1):59-69. PubMed ID: 17383670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic pathway of antimicrobial peptide magainin 2-induced pore formation in lipid membranes.
    Tamba Y; Ariyama H; Levadny V; Yamazaki M
    J Phys Chem B; 2010 Sep; 114(37):12018-26. PubMed ID: 20799752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of melittin binding to lipid bilayers. Aggregation and pore formation.
    Klocek G; Schulthess T; Shai Y; Seelig J
    Biochemistry; 2009 Mar; 48(12):2586-96. PubMed ID: 19173655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring peptide membrane interaction using surface plasmon resonance: differentiation between pore formation versus membrane disruption by lytic peptides.
    Papo N; Shai Y
    Biochemistry; 2003 Jan; 42(2):458-66. PubMed ID: 12525173
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energetics of pore formation induced by membrane active peptides.
    Lee MT; Chen FY; Huang HW
    Biochemistry; 2004 Mar; 43(12):3590-9. PubMed ID: 15035629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the multiphase interaction between a membrane disrupting peptide and a lipid membrane.
    Olaru A; Gheorghiu M; David S; Wohland T; Gheorghiu E
    J Phys Chem B; 2009 Oct; 113(43):14369-80. PubMed ID: 19807091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single giant unilamellar vesicle method reveals effect of antimicrobial peptide magainin 2 on membrane permeability.
    Tamba Y; Yamazaki M
    Biochemistry; 2005 Dec; 44(48):15823-33. PubMed ID: 16313185
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.