These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
406 related articles for article (PubMed ID: 9485411)
1. Domain flexibility in retroviral proteases: structural implications for drug resistant mutations. Rose RB; Craik CS; Stroud RM Biochemistry; 1998 Feb; 37(8):2607-21. PubMed ID: 9485411 [TBL] [Abstract][Full Text] [Related]
2. A major role for a set of non-active site mutations in the development of HIV-1 protease drug resistance. Muzammil S; Ross P; Freire E Biochemistry; 2003 Jan; 42(3):631-8. PubMed ID: 12534275 [TBL] [Abstract][Full Text] [Related]
3. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization. Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875 [TBL] [Abstract][Full Text] [Related]
4. Human immunodeficiency virus protease ligand specificity conferred by residues outside of the active site cavity. Hoog SS; Towler EM; Zhao B; Doyle ML; Debouck C; Abdel-Meguid SS Biochemistry; 1996 Aug; 35(32):10279-86. PubMed ID: 8756683 [TBL] [Abstract][Full Text] [Related]
5. Alternative native flap conformation revealed by 2.3 A resolution structure of SIV proteinase. Wilderspin AF; Sugrue RJ J Mol Biol; 1994 May; 239(1):97-103. PubMed ID: 8196050 [TBL] [Abstract][Full Text] [Related]
6. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985 [TBL] [Abstract][Full Text] [Related]
7. Protein promiscuity: drug resistance and native functions--HIV-1 case. Fernández A; Tawfik DS; Berkhout B; Sanders R; Kloczkowski A; Sen T; Jernigan B J Biomol Struct Dyn; 2005 Jun; 22(6):615-24. PubMed ID: 15842167 [TBL] [Abstract][Full Text] [Related]
8. Comparison of inhibitor binding to feline and human immunodeficiency virus proteases: structure-based drug design and the resistance problem. Dunn BM; Pennington MW; Frase DC; Nash K Biopolymers; 1999; 51(1):69-77. PubMed ID: 10380354 [TBL] [Abstract][Full Text] [Related]
9. A structural and thermodynamic escape mechanism from a drug resistant mutation of the HIV-1 protease. Vega S; Kang LW; Velazquez-Campoy A; Kiso Y; Amzel LM; Freire E Proteins; 2004 May; 55(3):594-602. PubMed ID: 15103623 [TBL] [Abstract][Full Text] [Related]
10. An alternative strategy for inhibiting multidrug-resistant mutants of the dimeric HIV-1 protease by targeting the subunit interface. Bannwarth L; Reboud-Ravaux M Biochem Soc Trans; 2007 Jun; 35(Pt 3):551-4. PubMed ID: 17511649 [TBL] [Abstract][Full Text] [Related]
11. Functional characterization of the protease of human endogenous retrovirus, K10: can it complement HIV-1 protease? Towler EM; Gulnik SV; Bhat TN; Xie D; Gustschina E; Sumpter TR; Robertson N; Jones C; Sauter M; Mueller-Lantzsch N; Debouck C; Erickson JW Biochemistry; 1998 Dec; 37(49):17137-44. PubMed ID: 9860826 [TBL] [Abstract][Full Text] [Related]
12. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions. Seibold SA; Cukier RI Proteins; 2007 Nov; 69(3):551-65. PubMed ID: 17623840 [TBL] [Abstract][Full Text] [Related]
13. Three-dimensional structures of HIV-1 and SIV protease product complexes. Rose RB; Craik CS; Douglas NL; Stroud RM Biochemistry; 1996 Oct; 35(39):12933-44. PubMed ID: 8841139 [TBL] [Abstract][Full Text] [Related]
14. Conformational flexibility in the flap domains of ligand-free HIV protease. Heaslet H; Rosenfeld R; Giffin M; Lin YC; Tam K; Torbett BE; Elder JH; McRee DE; Stout CD Acta Crystallogr D Biol Crystallogr; 2007 Aug; 63(Pt 8):866-75. PubMed ID: 17642513 [TBL] [Abstract][Full Text] [Related]
15. Insights into a mutation-assisted lateral drug escape mechanism from the HIV-1 protease active site. Sadiq SK; Wan S; Coveney PV Biochemistry; 2007 Dec; 46(51):14865-77. PubMed ID: 18052195 [TBL] [Abstract][Full Text] [Related]
16. "Wide-open" 1.3 A structure of a multidrug-resistant HIV-1 protease as a drug target. Martin P; Vickrey JF; Proteasa G; Jimenez YL; Wawrzak Z; Winters MA; Merigan TC; Kovari LC Structure; 2005 Dec; 13(12):1887-95. PubMed ID: 16338417 [TBL] [Abstract][Full Text] [Related]
17. Resistance mechanism revealed by crystal structures of unliganded nelfinavir-resistant HIV-1 protease non-active site mutants N88D and N88S. Bihani SC; Das A; Prashar V; Ferrer JL; Hosur MV Biochem Biophys Res Commun; 2009 Nov; 389(2):295-300. PubMed ID: 19720046 [TBL] [Abstract][Full Text] [Related]
18. Multidrug resistance to HIV-1 protease inhibition requires cooperative coupling between distal mutations. Ohtaka H; Schön A; Freire E Biochemistry; 2003 Nov; 42(46):13659-66. PubMed ID: 14622012 [TBL] [Abstract][Full Text] [Related]
19. Molecular analysis of the HIV-1 resistance development: enzymatic activities, crystal structures, and thermodynamics of nelfinavir-resistant HIV protease mutants. Kozísek M; Bray J; Rezácová P; Sasková K; Brynda J; Pokorná J; Mammano F; Rulísek L; Konvalinka J J Mol Biol; 2007 Dec; 374(4):1005-16. PubMed ID: 17977555 [TBL] [Abstract][Full Text] [Related]
20. Counteracting HIV-1 protease drug resistance: structural analysis of mutant proteases complexed with XV638 and SD146, cyclic urea amides with broad specificities. Ala PJ; Huston EE; Klabe RM; Jadhav PK; Lam PY; Chang CH Biochemistry; 1998 Oct; 37(43):15042-9. PubMed ID: 9790666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]