BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 9485415)

  • 1. Reconstitution and characterization of the Escherichia coli enterobactin synthetase from EntB, EntE, and EntF.
    Gehring AM; Mori I; Walsh CT
    Biochemistry; 1998 Feb; 37(8):2648-59. PubMed ID: 9485415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enterobactin biosynthesis in Escherichia coli: isochorismate lyase (EntB) is a bifunctional enzyme that is phosphopantetheinylated by EntD and then acylated by EntE using ATP and 2,3-dihydroxybenzoate.
    Gehring AM; Bradley KA; Walsh CT
    Biochemistry; 1997 Jul; 36(28):8495-503. PubMed ID: 9214294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly line enzymology by multimodular nonribosomal peptide synthetases: the thioesterase domain of E. coli EntF catalyzes both elongation and cyclolactonization.
    Shaw-Reid CA; Kelleher NL; Losey HC; Gehring AM; Berg C; Walsh CT
    Chem Biol; 1999 Jun; 6(6):385-400. PubMed ID: 10375542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ligand-induced conformational rearrangements promote interaction between the Escherichia coli enterobactin biosynthetic proteins EntE and EntB.
    Khalil S; Pawelek PD
    J Mol Biol; 2009 Oct; 393(3):658-71. PubMed ID: 19699210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The EntF and EntE adenylation domains of Escherichia coli enterobactin synthetase: sequestration and selectivity in acyl-AMP transfers to thiolation domain cosubstrates.
    Ehmann DE; Shaw-Reid CA; Losey HC; Walsh CT
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2509-14. PubMed ID: 10688898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic and inhibition studies of dihydroxybenzoate-AMP ligase from Escherichia coli.
    Sikora AL; Wilson DJ; Aldrich CC; Blanchard JS
    Biochemistry; 2010 May; 49(17):3648-57. PubMed ID: 20359185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissection of the EntF condensation domain boundary and active site residues in nonribosomal peptide synthesis.
    Roche ED; Walsh CT
    Biochemistry; 2003 Feb; 42(5):1334-44. PubMed ID: 12564937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biosynthesis of the Escherichia coli siderophore enterobactin: sequence of the entF gene, expression and purification of EntF, and analysis of covalent phosphopantetheine.
    Rusnak F; Sakaitani M; Drueckhammer D; Reichert J; Walsh CT
    Biochemistry; 1991 Mar; 30(11):2916-27. PubMed ID: 1826089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of EntF as a serine-activating enzyme.
    Reichert J; Sakaitani M; Walsh CT
    Protein Sci; 1992 Apr; 1(4):549-56. PubMed ID: 1338974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of the EntB multidomain nonribosomal peptide synthetase and functional analysis of its interaction with the EntE adenylation domain.
    Drake EJ; Nicolai DA; Gulick AM
    Chem Biol; 2006 Apr; 13(4):409-19. PubMed ID: 16632253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF.
    Hantash FM; Earhart CF
    J Bacteriol; 2000 Mar; 182(6):1768-73. PubMed ID: 10692387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic adenylation of 2,3-dihydroxybenzoate is enhanced by a protein-protein interaction between Escherichia coli 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase (EntA) and 2,3-dihydroxybenzoate-AMP ligase (EntE).
    Khalil S; Pawelek PD
    Biochemistry; 2011 Feb; 50(4):533-45. PubMed ID: 21166461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular co-localization of the Escherichia coli enterobactin biosynthetic enzymes EntA, EntB, and EntE.
    Pakarian P; Pawelek PD
    Biochem Biophys Res Commun; 2016 Sep; 478(1):25-32. PubMed ID: 27470582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases.
    Quadri LE; Weinreb PH; Lei M; Nakano MM; Zuber P; Walsh CT
    Biochemistry; 1998 Feb; 37(6):1585-95. PubMed ID: 9484229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential hydrolysis of aberrant intermediates by the type II thioesterase in Escherichia coli nonribosomal enterobactin synthesis: substrate specificities and mutagenic studies on the active-site residues.
    Guo ZF; Sun Y; Zheng S; Guo Z
    Biochemistry; 2009 Mar; 48(8):1712-22. PubMed ID: 19193103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of aryl carrier proteins in the enterobactin synthetase.
    Zhou Z; Lai JR; Walsh CT
    Proc Natl Acad Sci U S A; 2007 Jul; 104(28):11621-6. PubMed ID: 17606920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enterobactin synthetase-catalyzed formation of P(1),P(3)-diadenosine-5'-tetraphosphate.
    Sikora AL; Cahill SM; Blanchard JS
    Biochemistry; 2009 Nov; 48(46):10827-9. PubMed ID: 19852513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. EntG activity of Escherichia coli enterobactin synthetase.
    Staab JF; Earhart CF
    J Bacteriol; 1990 Nov; 172(11):6403-10. PubMed ID: 2172214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The hotdog thioesterase EntH (YbdB) plays a role in vivo in optimal enterobactin biosynthesis by interacting with the ArCP domain of EntB.
    Leduc D; Battesti A; Bouveret E
    J Bacteriol; 2007 Oct; 189(19):7112-26. PubMed ID: 17675380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Synthesis, and Biophysical Evaluation of Mechanism-Based Probes for Condensation Domains of Nonribosomal Peptide Synthetases.
    Shi C; Miller BR; Alexander EM; Gulick AM; Aldrich CC
    ACS Chem Biol; 2020 Jul; 15(7):1813-1819. PubMed ID: 32568518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.