BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9485425)

  • 1. Transition-state structure for the ADP-ribosylation of recombinant Gialpha1 subunits by pertussis toxin.
    Scheuring J; Berti PJ; Schramm VL
    Biochemistry; 1998 Mar; 37(9):2748-58. PubMed ID: 9485425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic isotope effect characterization of the transition state for oxidized nicotinamide adenine dinucleotide hydrolysis by pertussis toxin.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Apr; 36(15):4526-34. PubMed ID: 9109661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pertussis toxin: transition state analysis for ADP-ribosylation of G-protein peptide alphai3C20.
    Scheuring J; Schramm VL
    Biochemistry; 1997 Jul; 36(27):8215-23. PubMed ID: 9204866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition state structure for ADP-ribosylation of eukaryotic elongation factor 2 catalyzed by diphtheria toxin.
    Parikh SL; Schramm VL
    Biochemistry; 2004 Feb; 43(5):1204-12. PubMed ID: 14756556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A quantitative analysis for the ADP-ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products.
    Cyr T; Menzies AJ; Calver J; Whitehouse LW
    Biologicals; 2001 Jun; 29(2):81-95. PubMed ID: 11580213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ADP-ribosylation of alpha-Gi proteins by pertussis toxin. Positional dissection of acceptor sites using membrane anchored synthetic peptides.
    von Olleschik-Elbheim L; el BayĆ¢ A; Schmidt MA
    Methods Mol Biol; 2000; 145():203-17. PubMed ID: 10820724
    [No Abstract]   [Full Text] [Related]  

  • 7. Requirement of ADP-ribosylation for the pertussis toxin-induced alteration in electrophoretic mobility of G-proteins.
    Roerig SC; Loh HH; Law PY
    Biochem Biophys Res Commun; 1991 Nov; 180(3):1227-32. PubMed ID: 1835388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid degradation of NAD by retinoic acid-differentiated HL-60 granulocyte membranes prevents ADP ribosylation.
    McLeish KR; Jacobs AA
    Biochem Biophys Res Commun; 1993 Apr; 192(2):870-8. PubMed ID: 8387292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Induction of adenosine A1 receptor expression by pertussis toxin via an adenosine 5'-diphosphate ribosylation-independent pathway.
    Jajoo S; Mukherjea D; Pingle S; Sekino Y; Ramkumar V
    J Pharmacol Exp Ther; 2006 Apr; 317(1):1-10. PubMed ID: 16322354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Gi-protein-mediated mitogenesis following chronic ethanol exposure in a rat model of experimental hepatocellular carcinoma.
    McKillop IH; Vyas N; Schmidt CM; Cahill PA; Sitzmann JV
    Hepatology; 1999 Feb; 29(2):412-20. PubMed ID: 9918917
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Altered expression of inhibitory guanine nucleotide regulatory proteins (Gi-proteins) in experimental hepatocellular carcinoma.
    McKillop IH; Wu Y; Cahill PA; Sitzmann JV
    J Cell Physiol; 1998 Jun; 175(3):295-304. PubMed ID: 9572474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ADP-ribosylation activity in pertussis vaccines and its relationship to the in vivo histamine-sensitisation test.
    Gomez SR; Yuen CT; Asokanathan C; Douglas-Bardsley A; Corbel MJ; Coote JG; Parton R; Xing DK
    Vaccine; 2007 Apr; 25(17):3311-8. PubMed ID: 17287049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of pertussis toxin with NAD
    Sakari M; Tran MT; Rossjohn J; Pulliainen AT; Beddoe T; Littler DR
    J Biol Chem; 2022 May; 298(5):101892. PubMed ID: 35378130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitors of ADP-ribosylating bacterial toxins based on oxacarbenium ion character at their transition states.
    Zhou GC; Parikh SL; Tyler PC; Evans GB; Furneaux RH; Zubkova OV; Benjes PA; Schramm VL
    J Am Chem Soc; 2004 May; 126(18):5690-8. PubMed ID: 15125661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutation of cysteine 214 in Gi1 alpha subunit abolishes its endogenous GTPase activity.
    Wang Y; Tawa G; Smith D; Krishnamurthy G; Young KH
    Biochem J; 2004 May; 379(Pt 3):673-9. PubMed ID: 14725508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nucleotide exchange and cGMP phosphodiesterase activation by pertussis toxin inactivated transducin.
    Ramdas L; Disher RM; Wensel TG
    Biochemistry; 1991 Dec; 30(50):11637-45. PubMed ID: 1661143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A proposed mechanism of ADP-ribosylation catalyzed by the pertussis toxin S1 subunit.
    Locht C; Antoine R
    Biochimie; 1995; 77(5):333-40. PubMed ID: 8527486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescent labeling of signal-transducing G-proteins. Pertussis toxin-catalyzed etheno-ADP ribosylation of transducin.
    Hingorani VN; Ho YK
    J Biol Chem; 1988 Dec; 263(36):19804-8. PubMed ID: 3143731
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pertussis toxin induces structural changes in G alpha proteins independently of ADP-ribosylation.
    Ribeiro-Neto FA; Rodbell M
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2577-81. PubMed ID: 2523074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A specific beta gamma-subunit of transducin stimulates ADP-ribosylation of the alpha-subunit by pertussis toxin.
    Ohguro H; Fukada Y; Yoshizawa T; Saito T; Akino T
    Biochem Biophys Res Commun; 1990 Mar; 167(3):1235-41. PubMed ID: 2322268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.