BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 9485437)

  • 21. Time-resolved UV resonance Raman investigation of protein folding using a rapid mixer: characterization of kinetic folding intermediates of apomyoglobin.
    Haruta N; Kitagawa T
    Biochemistry; 2002 May; 41(21):6595-604. PubMed ID: 12022863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Time-resolved resonance Raman study on ultrafast structural relaxation and vibrational cooling of photodissociated carbonmonoxy myoglobin.
    Kitagawa T; Haruta N; Mizutani Y
    Biopolymers; 2002; 67(4-5):207-13. PubMed ID: 12012433
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hydrogen/deuterium exchange mass spectrometry with top-down electron capture dissociation for characterizing structural transitions of a 17 kDa protein.
    Pan J; Han J; Borchers CH; Konermann L
    J Am Chem Soc; 2009 Sep; 131(35):12801-8. PubMed ID: 19670873
    [TBL] [Abstract][Full Text] [Related]  

  • 24. UV resonance Raman determination of polyproline II, extended 2.5(1)-helix, and beta-sheet Psi angle energy landscape in poly-L-lysine and poly-L-glutamic acid.
    Mikhonin AV; Myshakina NS; Bykov SV; Asher SA
    J Am Chem Soc; 2005 Jun; 127(21):7712-20. PubMed ID: 15913361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Demonstration by ultraviolet resonance Raman spectroscopy of differences in DNA organization and interactions in filamentous viruses Pf1 and fd.
    Wen ZQ; Armstrong A; Thomas GJ
    Biochemistry; 1999 Mar; 38(10):3148-56. PubMed ID: 10074370
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultraviolet resonance Raman and absorption difference spectroscopy of myoglobins: titration behavior of individual tyrosine residues.
    Asher SA; Larkin PJ; Teraoka J
    Biochemistry; 1991 Jun; 30(24):5944-54. PubMed ID: 2043634
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UV resonance Raman and excited-state relaxation rate studies of hemoglobin.
    Cho N; Song S; Asher SA
    Biochemistry; 1994 May; 33(19):5932-41. PubMed ID: 8180222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural characterization of the molten globule state of apomyoglobin by limited proteolysis and HPLC-mass spectrometry.
    Kim YJ; Kim YA; Park N; Son HS; Kim KS; Hahn JH
    Biochemistry; 2005 May; 44(20):7490-6. PubMed ID: 15895992
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural characterization of unfolded states of apomyoglobin using residual dipolar couplings.
    Mohana-Borges R; Goto NK; Kroon GJ; Dyson HJ; Wright PE
    J Mol Biol; 2004 Jul; 340(5):1131-42. PubMed ID: 15236972
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural details of the thermophilic filamentous bacteriophage PH75 determined by polarized Raman microspectroscopy.
    Tsuboi M; Benevides JM; Bondre P; Thomas GJ
    Biochemistry; 2005 Mar; 44(12):4861-9. PubMed ID: 15779912
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [UV/Vis absorption, infrared and Raman spectroscopy].
    Uchida T; Kitagawa T
    Tanpakushitsu Kakusan Koso; 2004 Aug; 49(11 Suppl):1693-9. PubMed ID: 15377002
    [No Abstract]   [Full Text] [Related]  

  • 32. Effect of H helix destabilizing mutations on the kinetic and equilibrium folding of apomyoglobin.
    Cavagnero S; Dyson HJ; Wright PE
    J Mol Biol; 1999 Jan; 285(1):269-82. PubMed ID: 9878405
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional evaluation of heme vinyl groups in myoglobin with symmetric protoheme isomers.
    Mie Y; Yamada C; Hareau GP; Neya S; Uno T; Funasaki N; Nishiyama K; Taniguchi I
    Biochemistry; 2004 Oct; 43(41):13149-55. PubMed ID: 15476408
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vibrational spectroscopic studies on the disulfide formation and secondary conformational changes of captopril-HSA mixture after UV-B irradiation.
    Li MJ; Lin SY
    Photochem Photobiol; 2005; 81(6):1404-10. PubMed ID: 16354113
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UV resonance Raman study of angiotensin II conformation in nonaqueous environments: lipid micelles and acetonitrile.
    Holtz JS; Lednev IK; Asher SA
    Biopolymers; 2000; 57(2):55-63. PubMed ID: 10766956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural characterization of short-lived protein unfolding intermediates by laser-induced oxidative labeling and mass spectrometry.
    Stocks BB; Konermann L
    Anal Chem; 2009 Jan; 81(1):20-7. PubMed ID: 19055350
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Unfolding and pH studies on manganese peroxidase: role of heme and calcium on secondary structure stability.
    Banci L; Bartalesi I; Ciofi-Baffoni S; Tien M
    Biopolymers; 2003; 72(1):38-47. PubMed ID: 12400090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MCR-ALS analysis of two-way UV resonance Raman spectra to resolve discrete protein secondary structural motifs.
    Simpson JV; Balakrishnan G; Jiji RD
    Analyst; 2009 Jan; 134(1):138-47. PubMed ID: 19082186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hemoglobin site-mutants reveal dynamical role of interhelical H-bonds in the allosteric pathway: time-resolved UV resonance Raman evidence for intra-dimer coupling.
    Balakrishnan G; Tsai CH; Wu Q; Case MA; Pevsner A; McLendon GL; Ho C; Spiro TG
    J Mol Biol; 2004 Jul; 340(4):857-68. PubMed ID: 15223326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.