These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Catalytic triad of microsomal epoxide hydrolase: replacement of Glu404 with Asp leads to a strongly increased turnover rate. Arand M; Müller F; Mecky A; Hinz W; Urban P; Pompon D; Kellner R; Oesch F Biochem J; 1999 Jan; 337 ( Pt 1)(Pt 1):37-43. PubMed ID: 9854022 [TBL] [Abstract][Full Text] [Related]
4. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad. Li JJ; Bugg TD Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134 [TBL] [Abstract][Full Text] [Related]
5. Active site of epoxide hydrolases revisited: a noncanonical residue in potato StEH1 promotes both formation and breakdown of the alkylenzyme intermediate. Thomaeus A; Carlsson J; Aqvist J; Widersten M Biochemistry; 2007 Mar; 46(9):2466-79. PubMed ID: 17284015 [TBL] [Abstract][Full Text] [Related]
6. Evidence for a gem-diol reaction intermediate in bacterial C-C hydrolase enzymes BphD and MhpC from 13C NMR spectroscopy. Li JJ; Li C; Blindauer CA; Bugg TD Biochemistry; 2006 Oct; 45(41):12461-9. PubMed ID: 17029401 [TBL] [Abstract][Full Text] [Related]
7. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C; Li JJ; Montgomery MG; Wood SP; Bugg TD Biochemistry; 2006 Oct; 45(41):12470-9. PubMed ID: 17029402 [TBL] [Abstract][Full Text] [Related]
9. Cloning, expression and enantioselective hydrolytic catalysis of a microsomal epoxide hydrolase from a marine fish, Mugil cephalus. Lee SJ; Kim HS; Kim SJ; Park S; Kim BJ; Shuler ML; Lee EY Biotechnol Lett; 2007 Feb; 29(2):237-46. PubMed ID: 17151961 [TBL] [Abstract][Full Text] [Related]
10. Catalytic mechanism of C-C hydrolase MhpC from Escherichia coli: kinetic analysis of His263 and Ser110 site-directed mutants. Li C; Montgomery MG; Mohammed F; Li JJ; Wood SP; Bugg TD J Mol Biol; 2005 Feb; 346(1):241-51. PubMed ID: 15663941 [TBL] [Abstract][Full Text] [Related]
11. Catalytic mechanism of SHCHC synthase in the menaquinone biosynthesis of Escherichia coli: identification and mutational analysis of the active site residues. Jiang M; Chen X; Wu XH; Chen M; Wu YD; Guo Z Biochemistry; 2009 Jul; 48(29):6921-31. PubMed ID: 19545176 [TBL] [Abstract][Full Text] [Related]
13. Mechanism of the reaction catalyzed by isoaspartyl dipeptidase from Escherichia coli. Martí-Arbona R; Fresquet V; Thoden JB; Davis ML; Holden HM; Raushel FM Biochemistry; 2005 May; 44(19):7115-24. PubMed ID: 15882050 [TBL] [Abstract][Full Text] [Related]
14. A familiar motif in a new context: the catalytic mechanism of hydroxyisourate hydrolase. Raychaudhuri A; Tipton PA Biochemistry; 2003 Jun; 42(22):6848-52. PubMed ID: 12779339 [TBL] [Abstract][Full Text] [Related]
15. Site-directed mutagenesis of epoxide hydrolase to probe catalytic amino acid residues and reaction mechanism. Pan H; Xie Z; Bao W; Cheng Y; Zhang J; Li Y FEBS Lett; 2011 Aug; 585(15):2545-50. PubMed ID: 21763314 [TBL] [Abstract][Full Text] [Related]
16. Mutations in salt-bridging residues at the interface of the core and lid domains of epoxide hydrolase StEH1 affect regioselectivity, protein stability and hysteresis. Lindberg D; Ahmad S; Widersten M Arch Biochem Biophys; 2010 Mar; 495(2):165-73. PubMed ID: 20079707 [TBL] [Abstract][Full Text] [Related]
17. Soybean epoxide hydrolase: identification of the catalytic residues and probing of the reaction mechanism with secondary kinetic isotope effects. Blée E; Summerer S; Flenet M; Rogniaux H; Van Dorsselaer A; Schuber F J Biol Chem; 2005 Feb; 280(8):6479-87. PubMed ID: 15596432 [TBL] [Abstract][Full Text] [Related]
18. The structure of the C-C bond hydrolase MhpC provides insights into its catalytic mechanism. Dunn G; Montgomery MG; Mohammed F; Coker A; Cooper JB; Robertson T; Garcia JL; Bugg TD; Wood SP J Mol Biol; 2005 Feb; 346(1):253-65. PubMed ID: 15663942 [TBL] [Abstract][Full Text] [Related]
19. Probing the Ser-Ser-Lys catalytic triad mechanism of peptide amidase: computational studies of the ground state, transition state, and intermediate. Valiña AL; Mazumder-Shivakumar D; Bruice TC Biochemistry; 2004 Dec; 43(50):15657-72. PubMed ID: 15595822 [TBL] [Abstract][Full Text] [Related]
20. Farnesyl protein transferase: identification of K164 alpha and Y300 beta as catalytic residues by mutagenesis and kinetic studies. Wu Z; Demma M; Strickland CL; Radisky ES; Poulter CD; Le HV; Windsor WT Biochemistry; 1999 Aug; 38(35):11239-49. PubMed ID: 10471273 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]