These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 9485450)
1. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Furey WS; Joyce CM; Osborne MA; Klenerman D; Peliska JA; Balasubramanian S Biochemistry; 1998 Mar; 37(9):2979-90. PubMed ID: 9485450 [TBL] [Abstract][Full Text] [Related]
2. Tertiary conformation of the template-primer and gapped DNA substrates in complexes with rat polymerase beta. Fluorescence energy transfer studies using the multiple donor-acceptor approach. Jezewska MJ; Galletto R; Bujalowski W Biochemistry; 2003 Oct; 42(40):11864-78. PubMed ID: 14529299 [TBL] [Abstract][Full Text] [Related]
3. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF; Van der Schans EJ; Millar DP Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151 [TBL] [Abstract][Full Text] [Related]
4. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I. Carver TE; Millar DP Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315 [TBL] [Abstract][Full Text] [Related]
5. Fluorescence resonance energy transfer between donor-acceptor pair on two oligonucleotides hybridized adjacently to DNA template. Wang L; Gaigalas AK; Blasic J; Holden MJ; Gallagher DT; Pires R Biopolymers; 2003; 72(6):401-12. PubMed ID: 14587062 [TBL] [Abstract][Full Text] [Related]
6. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain. Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612 [TBL] [Abstract][Full Text] [Related]
7. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis. Lam WC; Van der Schans EJ; Sowers LC; Millar DP Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936 [TBL] [Abstract][Full Text] [Related]
8. Determination of DNA helical handedness by fluorescence resonance energy transfer. Jares-Erijman EA; Jovin TM J Mol Biol; 1996 Apr; 257(3):597-617. PubMed ID: 8648627 [TBL] [Abstract][Full Text] [Related]
9. Conformational dynamics of DNA polymerase probed with a novel fluorescent DNA base analogue. Stengel G; Gill JP; Sandin P; Wilhelmsson LM; Albinsson B; Nordén B; Millar D Biochemistry; 2007 Oct; 46(43):12289-97. PubMed ID: 17915941 [TBL] [Abstract][Full Text] [Related]
10. Spectroscopic characterization of fluorescein- and tetramethylrhodamine-labeled oligonucleotides and their complexes with a DNA template. Wang L; Gaigalas AK; Blasic J; Holden MJ Spectrochim Acta A Mol Biomol Spectrosc; 2004 Oct; 60(12):2741-50. PubMed ID: 15350908 [TBL] [Abstract][Full Text] [Related]
11. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis. Gestl EE; Eckert KA Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450 [TBL] [Abstract][Full Text] [Related]
12. Fluorescence resonance energy transfer (FRET) using ssDNA binding fluorescent dye. Orpana AK Biomol Eng; 2004 Apr; 21(2):45-50. PubMed ID: 15113557 [TBL] [Abstract][Full Text] [Related]
13. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase. Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720 [TBL] [Abstract][Full Text] [Related]
14. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase. Otto MR; Bloom LB; Goodman MF; Beechem JM Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721 [TBL] [Abstract][Full Text] [Related]
15. Use of 2-aminopurine fluorescence to examine conformational changes during nucleotide incorporation by DNA polymerase I (Klenow fragment). Purohit V; Grindley ND; Joyce CM Biochemistry; 2003 Sep; 42(34):10200-11. PubMed ID: 12939148 [TBL] [Abstract][Full Text] [Related]
16. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex. Srivastava A; Singh K; Modak MJ Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054 [TBL] [Abstract][Full Text] [Related]
17. Mapping the position of DNA polymerase-bound DNA templates in a nanopore at 5 A resolution. Gyarfas B; Olasagasti F; Benner S; Garalde D; Lieberman KR; Akeson M ACS Nano; 2009 Jun; 3(6):1457-66. PubMed ID: 19489560 [TBL] [Abstract][Full Text] [Related]
18. Thermodynamic dissection of the polymerizing and editing modes of a DNA polymerase. Bailey MF; van der Schans EJ; Millar DP J Mol Biol; 2004 Feb; 336(3):673-93. PubMed ID: 15095980 [TBL] [Abstract][Full Text] [Related]
19. Probing DNA polymerase-DNA interactions: examining the template strand in exonuclease complexes using 2-aminopurine fluorescence and acrylamide quenching. Tleugabulova D; Reha-Krantz LJ Biochemistry; 2007 Jun; 46(22):6559-69. PubMed ID: 17497891 [TBL] [Abstract][Full Text] [Related]
20. Structure of purine-purine mispairs during misincorporation and extension by Escherichia coli DNA polymerase I. Kretulskie AM; Spratt TE Biochemistry; 2006 Mar; 45(11):3740-6. PubMed ID: 16533057 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]