BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

286 related articles for article (PubMed ID: 9486003)

  • 1. Human arthroplasty derived macrophages differentiate into osteoclastic bone resorbing cells.
    Sabokbar A; Fujikawa Y; Neale S; Murray DW; Athanasou NA
    Ann Rheum Dis; 1997 Jul; 56(7):414-20. PubMed ID: 9486003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of osteoprotegerin and osteoprotegerin ligand on osteoclast formation by arthroplasty membrane derived macrophages.
    Itonaga I; Sabokbar A; Murray DW; Athanasou NA
    Ann Rheum Dis; 2000 Jan; 59(1):26-31. PubMed ID: 10627423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage colony-stimulating factor and interleukin-6 release by periprosthetic cells stimulates osteoclast formation and bone resorption.
    Neale SD; Sabokbar A; Howie DW; Murray DW; Athanasou NA
    J Orthop Res; 1999 Sep; 17(5):686-94. PubMed ID: 10569477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Quinn JM; McGee JO; Athanasou NA
    J Pathol; 1998 Jan; 184(1):31-6. PubMed ID: 9582524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human osteoclast formation and bone resorption by monocytes and synovial macrophages in rheumatoid arthritis.
    Fujikawa Y; Sabokbar A; Neale S; Athanasou NA
    Ann Rheum Dis; 1996 Nov; 55(11):816-22. PubMed ID: 8976638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human bone-derived cells support formation of human osteoclasts from arthroplasty-derived cells in vitro.
    Neale SD; Fujikawa Y; Sabokbar A; Gundle R; Murray DW; Graves SE; Howie DW; Athanasou NA
    J Bone Joint Surg Br; 2000 Aug; 82(6):892-900. PubMed ID: 10990320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synovial macrophage-osteoclast differentiation in inflammatory arthritis.
    Danks L; Sabokbar A; Gundle R; Athanasou NA
    Ann Rheum Dis; 2002 Oct; 61(10):916-21. PubMed ID: 12228163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two distinct cellular mechanisms of osteoclast formation and bone resorption in periprosthetic osteolysis.
    Sabokbar A; Kudo O; Athanasou NA
    J Orthop Res; 2003 Jan; 21(1):73-80. PubMed ID: 12507582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The characterization of macrophages and osteoclasts in tissues harvested from revised total hip prostheses.
    Chun L; Yoon J; Song Y; Huie P; Regula D; Goodman S
    J Biomed Mater Res; 1999; 48(6):899-903. PubMed ID: 10556857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage-osteoclast differentiation and bone resorption in osteoarthrotic subchondral acetabular cysts.
    Sabokbar A; Crawford R; Murray DW; Athanasou NA
    Acta Orthop Scand; 2000 Jun; 71(3):255-61. PubMed ID: 10919296
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human mesenchymal tumour-associated macrophages differentiate into osteoclastic bone-resorbing cells.
    Yang TT; Sabokbar A; Gibbons CL; Athanasou NA
    J Bone Joint Surg Br; 2002 Apr; 84(3):452-6. PubMed ID: 12002510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human osteoclast formation from blood monocytes, peritoneal macrophages, and bone marrow cells.
    Quinn JM; Neale S; Fujikawa Y; McGee JO; Athanasou NA
    Calcif Tissue Int; 1998 Jun; 62(6):527-31. PubMed ID: 9576981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydroxyapatite particles are capable of inducing osteoclast formation.
    Sabokbar A; Pandey R; Díaz J; Quinn JM; Murray DW; Athanasou NA
    J Mater Sci Mater Med; 2001 Aug; 12(8):659-64. PubMed ID: 15348234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macrophages that have phagocytosed particles are capable of differentiating into functional osteoclasts.
    Fujikawa Y; Itonaga I; Kudo O; Hirayama T; Taira H
    Mod Rheumatol; 2005; 15(5):346-51. PubMed ID: 17029091
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arthroplasty implant biomaterial particle associated macrophages differentiate into lacunar bone resorbing cells.
    Pandey R; Quinn J; Joyner C; Murray DW; Triffitt JT; Athanasou NA
    Ann Rheum Dis; 1996 Jun; 55(6):388-95. PubMed ID: 8694579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Osteoclasts in Periprosthetic Osteolysis: The Charnley Arthroplasty Revisited.
    Mukka SS; Andersson GN; Hultenby KR; Sköldenberg OG; Nordahl JP; Eisler TM
    J Arthroplasty; 2017 Oct; 32(10):3219-3227. PubMed ID: 28648703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoclastic differentiation by mononuclear phagocytes containing biomaterial particles.
    Sabokbar A; Pandey R; Quinn JM; Athanasou NA
    Arch Orthop Trauma Surg; 1998; 117(3):136-40. PubMed ID: 9521517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Blockade of XCL1/Lymphotactin Ameliorates Severity of Periprosthetic Osteolysis Triggered by Polyethylene-Particles.
    Tian Y; Terkawi MA; Onodera T; Alhasan H; Matsumae G; Takahashi D; Hamasaki M; Ebata T; Aly MK; Kida H; Shimizu T; Uetsuki K; Kadoya K; Iwasaki N
    Front Immunol; 2020; 11():1720. PubMed ID: 32849609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arthroplasty membrane-derived fibroblasts directly induce osteoclast formation and osteolysis in aseptic loosening.
    Sabokbar A; Itonaga I; Sun SG; Kudo O; Athanasou NA
    J Orthop Res; 2005 May; 23(3):511-9. PubMed ID: 15885469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synovial fluid macrophages are capable of osteoclast formation and resorption.
    Adamopoulos IE; Sabokbar A; Wordsworth BP; Carr A; Ferguson DJ; Athanasou NA
    J Pathol; 2006 Jan; 208(1):35-43. PubMed ID: 16278818
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.