BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 9487096)

  • 1. Scaling of muscle performance during escape responses in the fish myoxocephalus scorpius L.
    James R; i
    J Exp Biol; 1998 Apr; 201 (Pt 7)():913-23. PubMed ID: 9487096
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle power output during escape responses in an Antarctic fish.
    Franklin C; Johnston I
    J Exp Biol; 1997; 200(Pt 4):703-12. PubMed ID: 9318455
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How fish power predation fast-starts.
    Johnston I; Leeuwen J; Davies M; Beddow T
    J Exp Biol; 1995; 198(Pt 9):1851-61. PubMed ID: 9319764
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaling of intrinsic contractile properties and myofibrillar protein composition of fast muscle in the fish myoxocephalus scorpius L.
    James R; Cole N; Davies M; i
    J Exp Biol; 1998 Apr; 201 (Pt 7)():901-12. PubMed ID: 9487095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial variation in fast muscle function of the rainbow trout Oncorhynchus mykiss during fast-starts and sprinting.
    Ellerby DJ; Altringham JD
    J Exp Biol; 2001 Jul; 204(Pt 13):2239-50. PubMed ID: 11507108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle power output limits fast-start performance in fish.
    Wakeling JM; Johnston IA
    J Exp Biol; 1998 May; 201(Pt 10):1505-26. PubMed ID: 9556535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanical properties of polyneuronally innervated, myotomal muscle fibres isolated from a teleost fish (Myoxocephalus scorpius).
    Altringham JD; Johnston IA
    Pflugers Arch; 1988 Oct; 412(5):524-9. PubMed ID: 3194174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing hypotheses concerning the phenotypic plasticity of escape performance in fish of the family Cottidae.
    Temple G; i
    J Exp Biol; 1998; 201(3):317-31. PubMed ID: 9427667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasticity of muscle contractile properties following temperature acclimation in the marine fish Myoxocephalus scorpius.
    Beddow T; Johnston I
    J Exp Biol; 1995; 198(Pt 1):193-201. PubMed ID: 9317617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of pH and temperature on force development and shortening velocity in skinned muscle fibres from fish.
    Mutungi G; Johnston IA
    Fish Physiol Biochem; 1988 Oct; 5(4):257-62. PubMed ID: 24226787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biomechanics of fast-starts during ontogeny in the common carp cyprinus carpio.
    Wakeling JM; Kemp KM; Johnston IA
    J Exp Biol; 1999 Nov; 202 Pt 22():3057-67. PubMed ID: 10539954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal shortening velocity (V/Vmax) of skeletal muscle during cyclical contractions: length-force effects and velocity-dependent activation and deactivation.
    Askew GN; Marsh RL
    J Exp Biol; 1998 May; 201(Pt 10):1527-40. PubMed ID: 9556536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature and the energy cost of oscillatory work in teleost fast muscle fibres.
    Johnson TP; Johnston IA; Moon TW
    Pflugers Arch; 1991 Sep; 419(2):177-83. PubMed ID: 1961688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thunniform swimming: muscle dynamics and mechanical power production of aerobic fibres in yellowfin tuna (Thunnus albacares).
    Shadwick RE; Syme DA
    J Exp Biol; 2008 May; 211(Pt 10):1603-11. PubMed ID: 18456888
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaling of mechanical power output during burst escape flight in the Corvidae.
    Jackson BE; Dial KP
    J Exp Biol; 2011 Feb; 214(Pt 3):452-61. PubMed ID: 21228204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanical power output and hydromechanical efficiency of northern pike (Esox lucius) fast-starts.
    Frith H; Blake R
    J Exp Biol; 1995; 198(Pt 9):1863-73. PubMed ID: 9319773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Swimming kinematics of fast starts are altered by temperature acclimation in the marine fish Myoxocephalus scorpius.
    Beddow T; Leeuwen J; Johnston I
    J Exp Biol; 1995; 198(Pt 1):203-8. PubMed ID: 9317640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in temperature dependence of muscle contractile properties and myofibrillar ATPase activity in a cold-temperature fish.
    Johnston IA; Sidell BD
    J Exp Biol; 1984 Jul; 111():179-89. PubMed ID: 6238119
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Actions of epinephrine on the contractility of fast and slow skeletal muscle fibres in teleosts.
    Johnson TP; Moon TW; Johnston IA
    Fish Physiol Biochem; 1991 Mar; 9(1):83-9. PubMed ID: 24214613
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms underlying the plasticity of muscle contractile properties with temperature acclimation in the marine fish Myoxocephalus scorpius.
    Ball D; Johnston I
    J Exp Biol; 1996; 199(Pt 6):1363-73. PubMed ID: 9319257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.