These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 9487099)

  • 1. Air-breathing during activity in the fishes amia calva and lepisosteus oculatus.
    Farmer C; d
    J Exp Biol; 1998 Apr; 201 (Pt 7)():943-8. PubMed ID: 9487099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional morphology of the gills of the bowfin, Amia calva L., with special reference to their significance during air exposure.
    Daxboeck C; Barnard DK; Randall DJ
    Respir Physiol; 1981 Mar; 43(3):349-64. PubMed ID: 6792674
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of sustained hypoxia on the cardio-respiratory response of bowfin Amia calva: implications for changes in the oxygen transport system.
    Porteus CS; Wright PA; Milsom WK
    J Fish Biol; 2014 Mar; 84(3):827-43. PubMed ID: 24588643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspects of bimodal gas exchange in the bowfin, Amia calva L. (actinopterygii: amiiformes).
    Randall DJ; Cameron JN; Daxboeck C; Smatresk N
    Respir Physiol; 1981 Mar; 43(3):339-48. PubMed ID: 6792673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of Root effect hemoglobins in the absence of intracellular pH protection of the red blood cell: insights from primitive fishes.
    Regan MD; Brauner CJ
    J Comp Physiol B; 2010 Jun; 180(5):695-706. PubMed ID: 20213180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time domains of the hypoxic cardio-respiratory response in bowfin (Amia calva).
    Porteus CS; Wright PA; Milsom WK
    Respir Physiol Neurobiol; 2014 Feb; 192():118-27. PubMed ID: 24373839
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of air breathing on acid-base and ion regulation after exhaustive exercise and during low pH exposure in the bowfin, Amia calva.
    Gonzalez RJ; Milligan L; Pagnotta A; McDonald DG
    Physiol Biochem Zool; 2001; 74(4):502-9. PubMed ID: 11436134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chloride inhibition of nitrite uptake for non-teleost Actinopterygiian fishes.
    Boudreaux PJ; Ferrara AM; Fontenot QC
    Comp Biochem Physiol A Mol Integr Physiol; 2007 Jun; 147(2):420-3. PubMed ID: 17344081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heterogeneity of fish taste bud ultrastructure as demonstrated in the holosteans Amia calva and Lepisosteus oculatus.
    Reutter K; Boudriot F; Witt M
    Philos Trans R Soc Lond B Biol Sci; 2000 Sep; 355(1401):1225-8. PubMed ID: 11079403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for membrane-bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish.
    Gervais MR; Tufts BL
    J Exp Biol; 1998 Jul; 201(Pt 14):2205-12. PubMed ID: 9639594
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ventilation and acid-base recovery following exhausting activity in an air-breathing fish.
    Burleson M; Shipman B; Smatresk N
    J Exp Biol; 1998 May; 201 (Pt 9)():1359-68. PubMed ID: 9547316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of the organization of the cholinergic system in the brains of two holostean fishes, the Florida gar Lepisosteus platyrhincus and the bowfin Amia calva.
    Morona R; López JM; Northcutt RG; González A
    Brain Behav Evol; 2013; 81(2):109-42. PubMed ID: 23466570
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatty acid-binding protein genes of the ancient, air-breathing, ray-finned fish, spotted gar (Lepisosteus oculatus).
    Venkatachalam AB; Fontenot Q; Farrara A; Wright JM
    Comp Biochem Physiol Part D Genomics Proteomics; 2018 Mar; 25():19-25. PubMed ID: 29126085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterisation of putative oxygen chemoreceptors in bowfin (Amia calva).
    Porteus CS; Wright PA; Milsom WK
    J Exp Biol; 2014 Apr; 217(Pt 8):1269-77. PubMed ID: 24744423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The transition in hemoglobin proton-binding characteristics within the basal actinopterygian fishes.
    Regan MD; Brauner CJ
    J Comp Physiol B; 2010 Apr; 180(4):521-30. PubMed ID: 20044754
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Hypoxia and Hyperoxia on Growth and Expression of Hypoxia-Related Genes and Proteins in Spotted Gar Lepisosteus oculatus Larvae and Juveniles.
    Rimoldi S; Terova G; Zaccone G; Parker T; Kuciel M; Dabrowski K
    J Exp Zool B Mol Dev Evol; 2016 Jun; 326(4):250-67. PubMed ID: 27245617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the Orexin/Hypocretin System in the Brain of Holostean Fishes: Assessment of Possible Relationships with Monoamines and Neuropeptide Y.
    Lozano D; González A; López JM
    Brain Behav Evol; 2018; 91(4):228-251. PubMed ID: 30007977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gonadal cysts in spotted gar (Lepisosteus oculatus) from Bayou Trepagnier, Louisiana, USA.
    Thiyagarajah A; Anderson MB; Hartley WR
    Mar Environ Res; 2000; 50(1-5):279-82. PubMed ID: 11460704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of gill ventilation and air-breathing in the bowfin amia calva.
    Hedrick MS; Jones DR
    J Exp Biol; 1999 Jan; 202(1):87-94. PubMed ID: 9841898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary structure of stanniocalcin in two basal Actinopterygii.
    Amemiya Y; Youson JH
    Gen Comp Endocrinol; 2004 Jan; 135(2):250-7. PubMed ID: 14697312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.