These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
84 related articles for article (PubMed ID: 9487502)
1. Lighting up pest control. Bialy H; Castellino A; Dove A; Einarson M; Smith O Nat Biotechnol; 1998 Feb; 16(2):124. PubMed ID: 9487502 [No Abstract] [Full Text] [Related]
2. An ABC guide to the bacterial toxin complexes. Ffrench-Constant R; Waterfield N Adv Appl Microbiol; 2006; 58():169-83. PubMed ID: 16509446 [No Abstract] [Full Text] [Related]
3. [Metabolites produced by bacteria of Xenorhabdus and Photorhabdus]. Wang L; Yang X; Jian H; Yang H; Huang D Wei Sheng Wu Xue Bao; 2001 Dec; 41(6):753-6. PubMed ID: 12552836 [No Abstract] [Full Text] [Related]
4. [Taxonomy of entomopathogenic nematophilic bacteria]. Pang Z; Yang H Wei Sheng Wu Xue Bao; 2003 Aug; 43(4):527-33. PubMed ID: 16276932 [No Abstract] [Full Text] [Related]
5. Formation of new host-parasite systems on the example of nematodes genus Neoaplectana. Sandner H Wiad Parazytol; 1976; 22(4-5):569-72. PubMed ID: 1014697 [No Abstract] [Full Text] [Related]
6. Non-sporeforming bacteria pathogenic to insects: incidence and mechanisms. Lysenko O Annu Rev Microbiol; 1985; 39():673-95. PubMed ID: 3904616 [No Abstract] [Full Text] [Related]
7. Diversity and distribution of entomopathogenic nematodes (Nematoda: Steinernematidae, Heterorhabditidae) and their bacterial symbionts (gamma-Proteobacteria: Enterobacteriaceae) in Jordan. Stock SP; Al Banna L; Darwish R; Katbeh A J Invertebr Pathol; 2008 Jun; 98(2):228-34. PubMed ID: 18280494 [TBL] [Abstract][Full Text] [Related]
9. Using worms to better understand how Bacillus thuringiensis kills insects. Crickmore N Trends Microbiol; 2005 Aug; 13(8):347-50. PubMed ID: 15967665 [TBL] [Abstract][Full Text] [Related]
10. How to cope with insect resistance to Bt toxins? Bravo A; Soberón M Trends Biotechnol; 2008 Oct; 26(10):573-9. PubMed ID: 18706722 [TBL] [Abstract][Full Text] [Related]
11. Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. Goettel MS; Koike M; Kim JJ; Aiuchi D; Shinya R; Brodeur J J Invertebr Pathol; 2008 Jul; 98(3):256-61. PubMed ID: 18423483 [TBL] [Abstract][Full Text] [Related]
12. The influence of nematodes and parasitic fungi on host insects. Kamionek M Wiad Parazytol; 1976; 22(4-5):369-77. PubMed ID: 1014665 [No Abstract] [Full Text] [Related]
13. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action, and future prospects. Tian B; Yang J; Zhang KQ FEMS Microbiol Ecol; 2007 Aug; 61(2):197-213. PubMed ID: 17651135 [TBL] [Abstract][Full Text] [Related]
14. Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. Xue J; Liang G; Crickmore N; Li H; He K; Song F; Feng X; Huang D; Zhang J FEMS Microbiol Lett; 2008 Mar; 280(1):95-101. PubMed ID: 18248430 [TBL] [Abstract][Full Text] [Related]
15. Photorhabdus: a model for the analysis of pathogenicity and mutualism. Clarke DJ Cell Microbiol; 2008 Nov; 10(11):2159-67. PubMed ID: 18647173 [TBL] [Abstract][Full Text] [Related]
17. Microbial control and biotechnology research on Bacillus thuringiensis in China. Huang DF; Zhang J; Song FP; Lang ZH J Invertebr Pathol; 2007 Jul; 95(3):175-80. PubMed ID: 17481651 [TBL] [Abstract][Full Text] [Related]
18. Evolutionary genetics of a defensive facultative symbiont of insects: exchange of toxin-encoding bacteriophage. Degnan PH; Moran NA Mol Ecol; 2008 Feb; 17(3):916-29. PubMed ID: 18179430 [TBL] [Abstract][Full Text] [Related]
20. [Nematoda and their use in the control of insects of sanitary and medical significance and insects destructive to plant crops]. Zukowski K Rocz Panstw Zakl Hig; 1987; 38(2):170-7. PubMed ID: 3659779 [No Abstract] [Full Text] [Related] [Next] [New Search]