These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 9488398)

  • 21. The enzymatic domain of Clostridium difficile toxin A is located within its N-terminal region.
    Faust C; Ye B; Song KP
    Biochem Biophys Res Commun; 1998 Oct; 251(1):100-5. PubMed ID: 9790914
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inositol hexakisphosphate-dependent processing of Clostridium sordellii lethal toxin and Clostridium novyi alpha-toxin.
    Guttenberg G; Papatheodorou P; Genisyuerek S; Lü W; Jank T; Einsle O; Aktories K
    J Biol Chem; 2011 Apr; 286(17):14779-86. PubMed ID: 21385871
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exchange of a single amino acid switches the substrate properties of RhoA and RhoD toward glucosylating and transglutaminating toxins.
    Jank T; Pack U; Giesemann T; Schmidt G; Aktories K
    J Biol Chem; 2006 Jul; 281(28):19527-35. PubMed ID: 16702216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for effector loop conformations observed by NMR spectroscopy.
    Geyer M; Wilde C; Selzer J; Aktories K; Kalbitzer HR
    Biochemistry; 2003 Oct; 42(41):11951-9. PubMed ID: 14556626
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional implications of lethal toxin-catalysed glucosylation of (H/K/N)Ras and Rac1 in Clostridium sordellii-associated disease.
    Genth H; Just I
    Eur J Cell Biol; 2011 Nov; 90(11):959-65. PubMed ID: 21134703
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Low pH-induced formation of ion channels by clostridium difficile toxin B in target cells.
    Barth H; Pfeifer G; Hofmann F; Maier E; Benz R; Aktories K
    J Biol Chem; 2001 Apr; 276(14):10670-6. PubMed ID: 11152463
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Difference in Mono-O-Glucosylation of Ras Subtype GTPases Between Toxin A and Toxin B From
    Genth H; Junemann J; Lämmerhirt CM; Lücke AC; Schelle I; Just I; Gerhard R; Pich A
    Front Microbiol; 2018; 9():3078. PubMed ID: 30622517
    [No Abstract]   [Full Text] [Related]  

  • 28. Clostridium difficile and Clostridium sordellii toxins, proinflammatory versus anti-inflammatory response.
    Popoff MR
    Toxicon; 2018 Jul; 149():54-64. PubMed ID: 29146177
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases.
    Busch C; Hofmann F; Gerhard R; Aktories K
    J Biol Chem; 2000 May; 275(18):13228-34. PubMed ID: 10788427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin.
    Vetter IR; Hofmann F; Wohlgemuth S; Herrmann C; Just I
    J Mol Biol; 2000 Sep; 301(5):1091-5. PubMed ID: 10966807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of p38
    Schelle I; Bruening J; Buetepage M; Genth H
    Toxins (Basel); 2016 Dec; 9(1):. PubMed ID: 28025502
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on cysteine protease activity.
    Egerer M; Giesemann T; Jank T; Satchell KJ; Aktories K
    J Biol Chem; 2007 Aug; 282(35):25314-21. PubMed ID: 17591770
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for differential roles of the Rho subfamily of GTP-binding proteins in glucose- and calcium-induced insulin secretion from pancreatic beta cells.
    Kowluru A; Li G; Rabaglia ME; Segu VB; Hofmann F; Aktories K; Metz SA
    Biochem Pharmacol; 1997 Nov; 54(10):1097-108. PubMed ID: 9464452
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Characterization of the catalytic domain of Clostridium novyi alpha-toxin.
    Busch C; Schömig K; Hofmann F; Aktories K
    Infect Immun; 2000 Nov; 68(11):6378-83. PubMed ID: 11035748
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Analysis of synaptic neurotransmitter release mechanisms using bacterial toxins].
    Doussau F; Humeau Y; Vitiello F; Popoff MR; Poulain B
    J Soc Biol; 1999; 193(6):457-67. PubMed ID: 10783704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques.
    Zeiser J; Gerhard R; Just I; Pich A
    J Proteome Res; 2013 Apr; 12(4):1604-18. PubMed ID: 23387933
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clostridium difficile glucosyltransferase toxin B-essential amino acids for substrate binding.
    Jank T; Giesemann T; Aktories K
    J Biol Chem; 2007 Nov; 282(48):35222-31. PubMed ID: 17901056
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of cellular proteins in response to treatment with Clostridium difficile toxin B and Clostridium sordellii toxin L.
    Ciesielski-Treska J; Ulrich G; Baldacini O; Monteil H; Aunis D
    Eur J Cell Biol; 1991 Oct; 56(1):68-78. PubMed ID: 1724754
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cytosolic delivery and characterization of the TcdB glucosylating domain by using a heterologous protein fusion.
    Spyres LM; Qa'Dan M; Meader A; Tomasek JJ; Howard EW; Ballard JD
    Infect Immun; 2001 Jan; 69(1):599-601. PubMed ID: 11119561
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A phosphatidylserine-binding site in the cytosolic fragment of Clostridium sordellii lethal toxin facilitates glucosylation of membrane-bound Rac and is required for cytotoxicity.
    Mesmin B; Robbe K; Geny B; Luton F; Brandolin G; Popoff MR; Antonny B
    J Biol Chem; 2004 Nov; 279(48):49876-82. PubMed ID: 15383551
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.