BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 9488410)

  • 21. Developmental-form-specific DNA-binding proteins in Chlamydia spp.
    Wagar EA; Stephens RS
    Infect Immun; 1988 Jul; 56(7):1678-84. PubMed ID: 3384472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of in vitro transcription by addition of cloned, overexpressed major sigma factor of Chlamydia psittaci 6BC.
    Douglas AL; Saxena NK; Hatch TP
    J Bacteriol; 1994 May; 176(10):3033-9. PubMed ID: 8188604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a GrgA-Euo-HrcA Transcriptional Regulatory Network in Chlamydia.
    Wurihan W; Zou Y; Weber AM; Weldon K; Huang Y; Bao X; Zhu C; Wu X; Wang Y; Lai Z; Fan H
    mSystems; 2021 Aug; 6(4):e0073821. PubMed ID: 34342542
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of polymorphic outer membrane proteins of Chlamydia psittaci 6BC.
    Tanzer RJ; Longbottom D; Hatch TP
    Infect Immun; 2001 Apr; 69(4):2428-34. PubMed ID: 11254603
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of DNA fragment from Chlamydia psittaci avian strain which shows high homology with hypB gene of Chlamydia.
    Sato C; Katumata A; Takashima I; Hashimoto N
    Jpn J Vet Res; 1991 Dec; 39(2-4):167-77. PubMed ID: 1821439
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tryptophan recycling is responsible for the interferon-gamma resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells.
    Wood H; Roshick C; McClarty G
    Mol Microbiol; 2004 May; 52(3):903-16. PubMed ID: 15101993
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K-12: primary structure and identification of the DNA-binding domain.
    Zeng G; Ye S; Larson TJ
    J Bacteriol; 1996 Dec; 178(24):7080-9. PubMed ID: 8955387
    [TBL] [Abstract][Full Text] [Related]  

  • 28. PcaU, a transcriptional activator of genes for protocatechuate utilization in Acinetobacter.
    Gerischer U; Segura A; Ornston LN
    J Bacteriol; 1998 Mar; 180(6):1512-24. PubMed ID: 9515921
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic binding of the Vibrio fischeri LuxR transcriptional activator domain and RNA polymerase to the lux promoter region.
    Stevens AM; Dolan KM; Greenberg EP
    Proc Natl Acad Sci U S A; 1994 Dec; 91(26):12619-23. PubMed ID: 7809088
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification and characterization of acoK, a regulatory gene of the Klebsiella pneumoniae acoABCD operon.
    Peng HL; Yang YH; Deng WL; Chang HY
    J Bacteriol; 1997 Mar; 179(5):1497-504. PubMed ID: 9045805
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Remarkable sequence relatedness in the DNA encoding the major outer membrane protein of Chlamydia psittaci (koala type I) and Chlamydia pneumoniae.
    Girjes AA; Carrick FN; Lavin MF
    Gene; 1994 Jan; 138(1-2):139-42. PubMed ID: 8125292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differences in the envelope proteins of Chlamydia pneumoniae, Chlamydia trachomatis, and Chlamydia psittaci shown by two-dimensional gel electrophoresis.
    Moroni A; Pavan G; Donati M; Cevenini R
    Arch Microbiol; 1996 Mar; 165(3):164-8. PubMed ID: 8599533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp.
    Hatch TP; Allan I; Pearce JH
    J Bacteriol; 1984 Jan; 157(1):13-20. PubMed ID: 6690419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The control region of the pdu/cob regulon in Salmonella typhimurium.
    Chen P; Andersson DI; Roth JR
    J Bacteriol; 1994 Sep; 176(17):5474-82. PubMed ID: 8071226
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Localization and characterization of two putative TMH family proteins in Chlamydia psittaci.
    Wu H; Wang C; Jiang C; Xie Y; Liu L; Song Y; Ma X; Wu Y
    Microbiol Res; 2016 Feb; 183():19-25. PubMed ID: 26805615
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional response patterns of Chlamydophila psittaci in different in vitro models of persistent infection.
    Goellner S; Schubert E; Liebler-Tenorio E; Hotzel H; Saluz HP; Sachse K
    Infect Immun; 2006 Aug; 74(8):4801-8. PubMed ID: 16861668
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-level expression of Chlamydia psittaci major outer membrane protein in COS cells and in skeletal muscles of turkeys.
    Vanrompay D; Cox E; Mast J; Goddeeris B; Volckaert G
    Infect Immun; 1998 Nov; 66(11):5494-500. PubMed ID: 9784562
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle.
    Shaw EI; Dooley CA; Fischer ER; Scidmore MA; Fields KA; Hackstadt T
    Mol Microbiol; 2000 Aug; 37(4):913-25. PubMed ID: 10972811
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The competence transcription factor of Bacillus subtilis recognizes short A/T-rich sequences arranged in a unique, flexible pattern along the DNA helix.
    Hamoen LW; Van Werkhoven AF; Bijlsma JJ; Dubnau D; Venema G
    Genes Dev; 1998 May; 12(10):1539-50. PubMed ID: 9585513
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific antigens of Chlamydia pecorum and their homologues in C psittaci and C trachomatis.
    Baghian A; Kousoulas K; Truax R; Storz J
    Am J Vet Res; 1996 Dec; 57(12):1720-5. PubMed ID: 8950425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.