BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 9488496)

  • 1. Mechanism of preservation of myocardial calcium channel function by pyruvate cardioplegic solution.
    Ono K; Wada T; Lee TS; Gondo N; Hadama T; Arita M
    J Lab Clin Med; 1998 Feb; 131(2):136-45. PubMed ID: 9488496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. University of Wisconsin solution preserves myocardial calcium current response to isoproterenol in isolated canine ventricular myocytes.
    Ono K; Gondo N; Arita M; Fozzard HA; Hadama T; Uchida Y
    Circulation; 1995 Nov; 92(9 Suppl):II452-7. PubMed ID: 7586454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-dependent cardiotoxic effect of amiodarone in cardioplegic solutions correlates with loss of dihydropyridine binding sites: in vitro evidence for a potentially lethal interaction with procaine.
    Gøtzsche LS; Pedersen EM
    J Cardiovasc Pharmacol; 1994 Jan; 23(1):13-23. PubMed ID: 7511725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of sodium aspartate on the recovery of the rat heart from long-term hypothermic storage.
    Galiñanes M; Chambers DJ; Hearse DJ
    J Thorac Cardiovasc Surg; 1992 Mar; 103(3):521-31. PubMed ID: 1545551
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium content of St. Thomas' II cardioplegic solution damages ischemic immature myocardium.
    Baker EJ; Olinger GN; Baker JE
    Ann Thorac Surg; 1991 Oct; 52(4):993-9. PubMed ID: 1929665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Downstream defects in beta-adrenergic signaling and relation to myocyte contractility after cardioplegic arrest.
    Houck WV; Thomas CV; Doscher MA; Wang YH; Hebbar L; Joshi JD; Mukherjee R; Crawford FA; Spinale FG
    J Thorac Cardiovasc Surg; 1998 Jan; 115(1):190-9. PubMed ID: 9451063
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eighteen-hour preservation of rat hearts with hexanol and pyruvate cardioplegia.
    Kojima S; Wu ST; Wikman-Coffelt J; Parmley WW
    J Am Coll Cardiol; 1993 Apr; 21(5):1238-44. PubMed ID: 8459083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein.
    Ruiz-Velasco V; Zhong J; Hume JR; Keef KD
    Circ Res; 1998 Mar; 82(5):557-65. PubMed ID: 9529160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. beta-Adrenergic modulation of the inwardly rectifying potassium channel in isolated human ventricular myocytes. Alteration in channel response to beta-adrenergic stimulation in failing human hearts.
    Koumi S; Backer CL; Arentzen CE; Sato R
    J Clin Invest; 1995 Dec; 96(6):2870-81. PubMed ID: 8675658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of slow calcium channels of myocardial cells and vascular smooth muscle cells by cyclic nucleotides and phosphorylation.
    Sperelakis N; Xiong Z; Haddad G; Masuda H
    Mol Cell Biochem; 1994 Nov; 140(2):103-17. PubMed ID: 7898483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temperature dependence of macroscopic L-type calcium channel currents in single guinea pig ventricular myocytes.
    Allen TJ
    J Cardiovasc Electrophysiol; 1996 Apr; 7(4):307-21. PubMed ID: 8777479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyruvate modulates cardiac sarcoplasmic reticulum Ca2+ release in rats via mitochondria-dependent and -independent mechanisms.
    Zima AV; Kockskämper J; Mejia-Alvarez R; Blatter LA
    J Physiol; 2003 Aug; 550(Pt 3):765-83. PubMed ID: 12824454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells.
    Ishikawa T; Hume JR; Keef KD
    Circ Res; 1993 Dec; 73(6):1128-37. PubMed ID: 8222084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling.
    Zhou YY; Cheng H; Bogdanov KY; Hohl C; Altschuld R; Lakatta EG; Xiao RP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1611-8. PubMed ID: 9321856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cyclic AMP-independent inhibition of cardiac calcium current by forskolin.
    Asai T; Pelzer S; McDonald TF
    Mol Pharmacol; 1996 Nov; 50(5):1262-72. PubMed ID: 8913358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium entry via L-type calcium channels acts as a negative regulator of adenylyl cyclase activity and cyclic AMP levels in cardiac myocytes.
    Yu HJ; Ma H; Green RD
    Mol Pharmacol; 1993 Oct; 44(4):689-93. PubMed ID: 7694067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preservation of myocyte contractile function after hyperthermic cardioplegic arrest by activation of ATP-sensitive potassium channels.
    Dorman BH; Hebbar L; Hinton RB; Roy RC; Spinale FG
    Circulation; 1997 Oct; 96(7):2376-84. PubMed ID: 9337214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New positive inotropic agent OPC-8212 modulates single Ca2+ channels in ventricular myocytes of guinea pig.
    Yatani A; Imoto Y; Schwartz A; Brown AM
    J Cardiovasc Pharmacol; 1989 Jun; 13(6):812-9. PubMed ID: 2484074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beta-adrenergic modulation of transient inward current in guinea-pig cardiac myocytes. Evidence for regulation of Ca2(+)-release from sarcoplasmic reticulum by a cyclic AMP dependent mechanism.
    Boller M; Pott L
    Pflugers Arch; 1989 Dec; 415(3):276-88. PubMed ID: 2560168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of calcium currents in cardiac myocytes by empty beta-adrenoceptors.
    Mewes T; Dutz S; Ravens U; Jakobs KH
    Circulation; 1993 Dec; 88(6):2916-22. PubMed ID: 8252705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.