These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 9489009)

  • 1. Anion channels and the stimulation of anthocyanin accumulation by blue light in Arabidopsis seedlings.
    Noh B; Spalding EP
    Plant Physiol; 1998 Feb; 116(2):503-9. PubMed ID: 9489009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two genetically separable phases of growth inhibition induced by blue light in Arabidopsis seedlings.
    Parks BM; Cho MH; Spalding EP
    Plant Physiol; 1998 Oct; 118(2):609-15. PubMed ID: 9765547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An anion channel in Arabidopsis hypocotyls activated by blue light.
    Cho MH; Spalding EP
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8134-8. PubMed ID: 8755616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca(2+)-activated anion channels and membrane depolarizations induced by blue light and cold in Arabidopsis seedlings.
    Lewis BD; Karlin-Neumann G; Davis RW; Spalding EP
    Plant Physiol; 1997 Aug; 114(4):1327-34. PubMed ID: 9276950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Both HY5 and HYH are necessary regulators for low temperature-induced anthocyanin accumulation in Arabidopsis seedlings.
    Zhang Y; Zheng S; Liu Z; Wang L; Bi Y
    J Plant Physiol; 2011 Mar; 168(4):367-74. PubMed ID: 20932601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Flavonoid Biosynthetic Genes in Germinating Arabidopsis Seedlings.
    Kubasek WL; Shirley BW; McKillop A; Goodman HM; Briggs W; Ausubel FM
    Plant Cell; 1992 Oct; 4(10):1229-1236. PubMed ID: 12297632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Features of anthocyanin biosynthesis in pap1-D and wild-type Arabidopsis thaliana plants grown in different light intensity and culture media conditions.
    Shi MZ; Xie DY
    Planta; 2010 May; 231(6):1385-400. PubMed ID: 20309578
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of Anthocyanin Accumulation by Cytokinins in Arabidopsis thaliana.
    Deikman J; Hammer PE
    Plant Physiol; 1995 May; 108(1):47-57. PubMed ID: 12228453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional conservation of plant secondary metabolic enzymes revealed by complementation of Arabidopsis flavonoid mutants with maize genes.
    Dong X; Braun EL; Grotewold E
    Plant Physiol; 2001 Sep; 127(1):46-57. PubMed ID: 11553733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low Temperature Induces the Accumulation of Phenylalanine Ammonia-Lyase and Chalcone Synthase mRNAs of Arabidopsis thaliana in a Light-Dependent Manner.
    Leyva A; Jarillo JA; Salinas J; Martinez-Zapater JM
    Plant Physiol; 1995 May; 108(1):39-46. PubMed ID: 12228452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anthocyanin accumulation and expression of anthocyanin biosynthetic genes in radish (Raphanus sativus).
    Park NI; Xu H; Li X; Jang IH; Park S; Ahn GH; Lim YP; Kim SJ; Park SU
    J Agric Food Chem; 2011 Jun; 59(11):6034-9. PubMed ID: 21548630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrogen supply affects anthocyanin biosynthetic and regulatory genes in grapevine cv. Cabernet-Sauvignon berries.
    Soubeyrand E; Basteau C; Hilbert G; van Leeuwen C; Delrot S; Gomès E
    Phytochemistry; 2014 Jul; 103():38-49. PubMed ID: 24735825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A light-independent developmental mechanism potentiates flavonoid gene expression in Arabidopsis seedlings.
    Kubasek WL; Ausubel FM; Shirley BW
    Plant Mol Biol; 1998 May; 37(2):217-23. PubMed ID: 9617795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis.
    Xu Z; Mahmood K; Rothstein SJ
    Plant Cell Physiol; 2017 Aug; 58(8):1364-1377. PubMed ID: 28586465
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit.
    Xu F; Cao S; Shi L; Chen W; Su X; Yang Z
    J Agric Food Chem; 2014 May; 62(20):4778-83. PubMed ID: 24783962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UV-A light induces anthocyanin biosynthesis in a manner distinct from synergistic blue + UV-B light and UV-A/blue light responses in different parts of the hypocotyls in turnip seedlings.
    Wang Y; Zhou B; Sun M; Li Y; Kawabata S
    Plant Cell Physiol; 2012 Aug; 53(8):1470-80. PubMed ID: 22706033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A wild 'albino' bilberry (Vaccinium myrtillus L.) from Slovenia shows three bottlenecks in the anthocyanin pathway and significant differences in the expression of several regulatory genes compared to the common blue berry type.
    Zorenc Z; Veberic R; Slatnar A; Koron D; Miosic S; Chen MH; Haselmair-Gosch C; Halbwirth H; Mikulic-Petkovsek M
    PLoS One; 2017; 12(12):e0190246. PubMed ID: 29272302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation.
    Wang J; Wang Y; Yang J; Ma C; Zhang Y; Ge T; Qi Z; Kang Y
    J Integr Plant Biol; 2015 Aug; 57(8):708-21. PubMed ID: 25494721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cryptochrome 1 from Brassica napus is up-regulated by blue light and controls hypocotyl/stem growth and anthocyanin accumulation.
    Chatterjee M; Sharma P; Khurana JP
    Plant Physiol; 2006 May; 141(1):61-74. PubMed ID: 16531484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis.
    Solfanelli C; Poggi A; Loreti E; Alpi A; Perata P
    Plant Physiol; 2006 Feb; 140(2):637-46. PubMed ID: 16384906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.