These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 9489499)

  • 1. The timing of prehensile movements in subjects with cerebral palsy.
    Steenbergen B; Hulstijn W; Lemmens IH; Meulenbroek RG
    Dev Med Child Neurol; 1998 Feb; 40(2):108-14. PubMed ID: 9489499
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of hand function and precision grip control in individuals with cerebral palsy: a 13-year follow-up study.
    Eliasson AC; Forssberg H; Hung YC; Gordon AM
    Pediatrics; 2006 Oct; 118(4):e1226-36. PubMed ID: 17015511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constraints on grip selection in hemiparetic cerebral palsy: effects of lesional side, end-point accuracy, and context.
    Steenbergen B; Meulenbroek RG; Rosenbaum DA
    Brain Res Cogn Brain Res; 2004 Apr; 19(2):145-59. PubMed ID: 15019711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dexterity is impaired at both hands following unilateral subcortical middle cerebral artery stroke.
    Nowak DA; Grefkes C; Dafotakis M; Küst J; Karbe H; Fink GR
    Eur J Neurosci; 2007 May; 25(10):3173-84. PubMed ID: 17561831
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relation between clinical measures and fine manipulative control in children with hemiplegic cerebral palsy.
    Gordon AM; Duff SV
    Dev Med Child Neurol; 1999 Sep; 41(9):586-91. PubMed ID: 10503916
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of viewing the moving limb and target object during the early phase of movement on the online control of grasping.
    Fukui T; Inui T
    Hum Mov Sci; 2006 Jun; 25(3):349-71. PubMed ID: 16707178
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impaired generalization of weight-related information during grasping in cerebellar degeneration.
    Nowak DA; Hermsdörfer J; Timmann D; Rost K; Topka H
    Neuropsychologia; 2005; 43(1):20-7. PubMed ID: 15488901
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Children with spastic hemiplegia are equally able as controls in maintaining a precise percentage of maximum force without visually monitoring their performance.
    Rameckers EA; Smits-Engelsman BC; Duysens J
    Neuropsychologia; 2005; 43(13):1938-45. PubMed ID: 16168734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grip force behavior during object manipulation in neurological disorders: toward an objective evaluation of manual performance deficits.
    Nowak DA; Hermsdörfer J
    Mov Disord; 2005 Jan; 20(1):11-25. PubMed ID: 15455447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deficits of predictive grip force control during object manipulation in acute stroke.
    Nowak DA; Hermsdörfer J; Topka H
    J Neurol; 2003 Jul; 250(7):850-60. PubMed ID: 12883929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preserved and impaired aspects of predictive grip force control in cerebellar patients.
    Rost K; Nowak DA; Timmann D; Hermsdörfer J
    Clin Neurophysiol; 2005 Jun; 116(6):1405-14. PubMed ID: 15978503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of wrist hand splints on grip, pinch, manual dexterity, and muscle activation in children with spastic hemiplegia: a preliminary study.
    Burtner PA; Poole JL; Torres T; Medora AM; Abeyta R; Keene J; Qualls C
    J Hand Ther; 2008; 21(1):36-42; quiz 43. PubMed ID: 18215750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fingertip force planning during grasp is disrupted by impaired sensorimotor integration in children with hemiplegic cerebral palsy.
    Gordon AM; Charles J; Steenbergen B
    Pediatr Res; 2006 Nov; 60(5):587-91. PubMed ID: 16988186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impairments in precision grip correlate with functional measures in adult hemiplegia.
    McDonnell MN; Hillier SL; Ridding MC; Miles TS
    Clin Neurophysiol; 2006 Jul; 117(7):1474-80. PubMed ID: 16679058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial.
    Charles JR; Wolf SL; Schneider JA; Gordon AM
    Dev Med Child Neurol; 2006 Aug; 48(8):635-42. PubMed ID: 16836774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impaired grip force modulation in the ipsilesional hand after unilateral middle cerebral artery stroke.
    Quaney BM; Perera S; Maletsky R; Luchies CW; Nudo RJ
    Neurorehabil Neural Repair; 2005 Dec; 19(4):338-49. PubMed ID: 16263966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Muscle stiffness and strength and their relation to hand function in children with hemiplegic cerebral palsy.
    Vaz DV; Cotta Mancini M; Fonseca ST; Vieira DS; de Melo Pertence AE
    Dev Med Child Neurol; 2006 Sep; 48(9):728-33. PubMed ID: 16904018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An extended drawing test for the assessment of arm and hand function with a performance invariant for healthy subjects.
    Vuillermot S; Pescatore A; Holper L; Kiper DC; Eng K
    J Neurosci Methods; 2009 Mar; 177(2):452-60. PubMed ID: 19013483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of constraint-induced movement therapy on hand skills and muscle recruitment of children with spastic hemiplegic cerebral palsy.
    Stearns GE; Burtner P; Keenan KM; Qualls C; Phillips J
    NeuroRehabilitation; 2009; 24(2):95-108. PubMed ID: 19339749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Motor control testing of upper limb function after botulinum toxin injection: a case study.
    Hurvitz EA; Conti GE; Flansburg EL; Brown SH
    Arch Phys Med Rehabil; 2000 Oct; 81(10):1408-15. PubMed ID: 11030508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.