These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 9489667)

  • 1. From famine to feast: the role of methylglyoxal production in Escherichia coli.
    Tötemeyer S; Booth NA; Nichols WW; Dunbar B; Booth IR
    Mol Microbiol; 1998 Feb; 27(3):553-62. PubMed ID: 9489667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of catalytic bases in the active site of Escherichia coli methylglyoxal synthase: cloning, expression, and functional characterization of conserved aspartic acid residues.
    Saadat D; Harrison DH
    Biochemistry; 1998 Jul; 37(28):10074-86. PubMed ID: 9665712
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1, 2-propanediol.
    Huang K; Rudolph FB; Bennett GN
    Appl Environ Microbiol; 1999 Jul; 65(7):3244-7. PubMed ID: 10388730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli.
    Altaras NE; Cameron DC
    Appl Environ Microbiol; 1999 Mar; 65(3):1180-5. PubMed ID: 10049880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polysaccharide lyase: molecular cloning, sequencing, and overexpression of the xanthan lyase gene of Bacillus sp. strain GL1.
    Hashimoto W; Miki H; Tsuchiya N; Nankai H; Murata K
    Appl Environ Microbiol; 2001 Feb; 67(2):713-20. PubMed ID: 11157235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ribose utilization with an excess of mutarotase causes cell death due to accumulation of methylglyoxal.
    Kim I; Kim E; Yoo S; Shin D; Min B; Song J; Park C
    J Bacteriol; 2004 Nov; 186(21):7229-35. PubMed ID: 15489434
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli.
    Grabar TB; Zhou S; Shanmugam KT; Yomano LP; Ingram LO
    Biotechnol Lett; 2006 Oct; 28(19):1527-35. PubMed ID: 16868860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. II. Dynamic response to famine and feast, activation of the methylglyoxal pathway and oscillatory behaviour.
    Weber J; Kayser A; Rinas U
    Microbiology (Reading); 2005 Mar; 151(Pt 3):707-716. PubMed ID: 15758217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The crystal structure of methylglyoxal synthase from Escherichia coli.
    Saadat D; Harrison DH
    Structure; 1999 Mar; 7(3):309-17. PubMed ID: 10368300
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of methylglyoxal synthase gene (mgsA) increased sugar co-metabolism in ethanol-producing Escherichia coli.
    Yomano LP; York SW; Shanmugam KT; Ingram LO
    Biotechnol Lett; 2009 Sep; 31(9):1389-98. PubMed ID: 19458924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cloning, expression, and characterization of a novel methylglyoxal synthase from Thermus sp. strain GH5.
    Pazhang M; Khajeh K; Asghari SM; Falahati H; Naderi-Manesh H
    Appl Biochem Biotechnol; 2010 Nov; 162(6):1519-28. PubMed ID: 20419481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic implications of methylglyoxal synthase complexed with phosphoglycolohydroxamic acid as observed by X-ray crystallography and NMR spectroscopy.
    Marks GT; Harris TK; Massiah MA; Mildvan AS; Harrison DH
    Biochemistry; 2001 Jun; 40(23):6805-18. PubMed ID: 11389594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two mechanisms for growth inhibition by elevated transport of sugar phosphates in Escherichia coli.
    Kadner RJ; Murphy GP; Stephens CM
    J Gen Microbiol; 1992 Oct; 138(10):2007-14. PubMed ID: 1479338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of glyoxalase I in the detoxification of methylglyoxal and in the activation of the KefB K+ efflux system in Escherichia coli.
    MacLean MJ; Ness LS; Ferguson GP; Booth IR
    Mol Microbiol; 1998 Feb; 27(3):563-71. PubMed ID: 9489668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of rpoS in the regulation of glyoxalase III in Escherichia coli.
    Benov L; Sequeira F; Beema AF
    Acta Biochim Pol; 2004; 51(3):857-60. PubMed ID: 15448747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bradyrhizobium japonicum rhizobitoxine genes and putative enzyme functions: expression requires a translational frameshift.
    Ruan X; Zhang C; Peters NK
    Proc Natl Acad Sci U S A; 1993 Apr; 90(7):2641-5. PubMed ID: 8464870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rationalization of allosteric pathway in Thermus sp. GH5 methylglyoxal synthase.
    Zareian S; Khajeh K; Pazhang M; Ranjbar B
    BMB Rep; 2012 Dec; 45(12):748-53. PubMed ID: 23261063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An alternative allosteric pathway in thermophilic methylglyoxal synthase.
    Atabakhshi-Kashi M; Mohammadi M; Mirhassani R; Dabirmanesh B; Sajedi RH; Khajeh K
    Int J Biol Macromol; 2016 Dec; 93(Pt A):526-533. PubMed ID: 27608544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of methylglyoxal synthase from goat liver.
    Ray S; Ray M
    J Biol Chem; 1981 Jun; 256(12):6230-3. PubMed ID: 7240200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.