These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9489738)

  • 21. Inactivation of cholinesterase by ascorbic acid in the presence of cupric ions: a possible mechanism for the inactivation of an enzyme by the metal-catalyzed oxidation system.
    Kanazawa H; Fujimoto S; Ohara A
    Biol Pharm Bull; 1995 Sep; 18(9):1179-83. PubMed ID: 8845800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inactivation of mitochondrial adenosine triphosphatase from Trypanosoma cruzi by oxygen radicals.
    Cataldi de Flombaum MA; Stoppani AO
    Biochem Int; 1986 Jun; 12(6):785-93. PubMed ID: 3017349
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Selective oxidative modification and affinity cleavage of pigeon liver malic enzyme by the Cu(2+)-ascorbate system.
    Chou WY; Tsai WP; Lin CC; Chang GG
    J Biol Chem; 1995 Oct; 270(43):25935-41. PubMed ID: 7592782
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative inactivation of plasmin and other serine proteases by copper and ascorbate.
    Lind SE; McDonagh JR; Smith CJ
    Blood; 1993 Sep; 82(5):1522-31. PubMed ID: 8364203
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of metal ions on radical intensity and cytotoxic activity of ascorbate.
    Satoh K; Sakagami H
    Anticancer Res; 1997; 17(2A):1125-9. PubMed ID: 9137459
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of maize NADP-malic enzyme by Cu2+-ascorbate.
    Pinto SE; Rao SR; Bhagwat AS
    Indian J Biochem Biophys; 2002 Feb; 39(1):55-9. PubMed ID: 22896889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidation by trace Cu2+ ions underlies the ability of ascorbate to induce vascular dysfunction in the rat perfused mesentery.
    Nelli S; Craig J; Martin W
    Eur J Pharmacol; 2009 Jul; 614(1-3):84-90. PubMed ID: 19394330
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidative inactivation of lactonase activity of purified human paraoxonase 1 (PON1).
    Nguyen SD; Hung ND; Cheon-Ho P; Ree KM; Dai-Eun S
    Biochim Biophys Acta; 2009 Mar; 1790(3):155-60. PubMed ID: 19103263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mechanism of melatonin protection against copper-ascorbate-induced oxidative damage in vitro through isothermal titration calorimetry.
    Ghosh AK; Naaz S; Bhattacharjee B; Ghosal N; Chattopadhyay A; Roy S; Reiter RJ; Bandyopadhyay D
    Life Sci; 2017 Jul; 180():123-136. PubMed ID: 28528861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of radical scavengers on the inactivation of papain by ascorbic acid in the presence of cupric ions.
    Kanazawa H; Fujimoto S; Ohara A
    Biol Pharm Bull; 1994 Apr; 17(4):476-81. PubMed ID: 8069251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Brain myelin-bound Zn(2+)-glycerophosphocholine cholinephosphodiesterase is a glycosylphosphatidylinositol-anchored enzyme of two different molecular forms.
    Sok DE; Kim MR
    Neurochem Res; 1994 Jan; 19(1):97-103. PubMed ID: 8139771
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Beneficial effect of oleoylated lipids on paraoxonase 1: protection against oxidative inactivation and stabilization.
    Nguyen SD; Sok DE
    Biochem J; 2003 Oct; 375(Pt 2):275-85. PubMed ID: 12871208
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation and inactivation of brain phosphocholine-phosphatase activity.
    Seo SK; Liu XW; Lee HJ; Kim HK; Kim MR; Sok DE
    Arch Pharm Res; 1999 Oct; 22(5):464-73. PubMed ID: 10549573
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Prooxidant action of desferrioxamine: enhancement of alkaline phosphatase inactivation by interaction with ascorbate system.
    Mordente A; Meucci E; Miggiano GA; Martorana GE
    Arch Biochem Biophys; 1990 Mar; 277(2):234-40. PubMed ID: 2155577
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ascorbic acid and oxidative inactivation of proteins.
    Stadtman ER
    Am J Clin Nutr; 1991 Dec; 54(6 Suppl):1125S-1128S. PubMed ID: 1962558
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superoxide-dependent and ascorbate-dependent formation of hydroxyl radicals in the presence of copper salts: a physiologically significant reaction?
    Rowley DA; Halliwell B
    Arch Biochem Biophys; 1983 Aug; 225(1):279-84. PubMed ID: 6311105
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ascorbic acid, metal ions and the superoxide radical.
    Halliwell B; Foyer CH
    Biochem J; 1976 Jun; 155(3):697-700. PubMed ID: 182136
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxidative scission of plant cell wall polysaccharides by ascorbate-induced hydroxyl radicals.
    Fry SC
    Biochem J; 1998 Jun; 332 ( Pt 2)(Pt 2):507-15. PubMed ID: 9601081
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.