BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 9489745)

  • 1. Fatty acid transport and utilization for the developing brain.
    Edmond J; Higa TA; Korsak RA; Bergner EA; Lee WN
    J Neurochem; 1998 Mar; 70(3):1227-34. PubMed ID: 9489745
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The origin of palmitic acid in brain of the developing rat.
    Marbois BN; Ajie HO; Korsak RA; Sensharma DK; Edmond J
    Lipids; 1992 Aug; 27(8):587-92. PubMed ID: 1406069
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolism in humans of cis-12,trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids.
    Emken EA; Rohwedder WK; Adlof RO; Rakoff H; Gulley RM
    Lipids; 1987 Jul; 22(7):495-504. PubMed ID: 3306237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Is there a blood-brain relationship for saturated fatty acids during development?
    Bourre JM; Gozlan-Devillierre N; Daudu O; Baumann N
    Biol Neonate; 1978; 34(3-4):182-6. PubMed ID: 737240
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of linoleic acid on desaturation and uptake of deuterium-labeled palmitic and stearic acids in humans.
    Emken EA; Adlof RO; Rohwedder WK; Gulley RM
    Biochim Biophys Acta; 1993 Oct; 1170(2):173-81. PubMed ID: 8399342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolism of (I- 14 C)palmitic acid in the developing brain: persistence of radioactivity in the carboxyl carbon.
    Dhopeshwarkar GA; Subramanian C; Mead JF
    Biochim Biophys Acta; 1973 Feb; 296(2):257-64. PubMed ID: 4688435
    [No Abstract]   [Full Text] [Related]  

  • 7. Essential polyunsaturated fatty acids and the barrier to the brain: the components of a model for transport.
    Edmond J
    J Mol Neurosci; 2001; 16(2-3):181-93; discussion 215-21. PubMed ID: 11478373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pathways for fatty acid elongation and desaturation in Neurospora crassa.
    McKeon TA; Goodrich-Tanrikulu M; Lin JT; Stafford A
    Lipids; 1997 Jan; 32(1):1-5. PubMed ID: 9075186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of regulation of lipogenesis in the Zucker diabetic rat. II. Changes in stearate and oleate synthesis.
    Bassilian S; Ahmed S; Lim SK; Boros LG; Mao CS; Lee WN
    Am J Physiol Endocrinol Metab; 2002 Mar; 282(3):E507-13. PubMed ID: 11832351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of variations in the proportions of saturated, monounsaturated and polyunsaturated fatty acids in the rat diet on spleen lymphocyte functions.
    Jeffery NM; Cortina M; Newsholme EA; Calder PC
    Br J Nutr; 1997 May; 77(5):805-23. PubMed ID: 9175999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Milk fatty acids II: prediction of the production of individual fatty acids in bovine milk.
    Moate PJ; Chalupa W; Boston RC; Lean IJ
    J Dairy Sci; 2008 Mar; 91(3):1175-88. PubMed ID: 18292274
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids.
    Grundy SM
    Am J Clin Nutr; 1994 Dec; 60(6 Suppl):986S-990S. PubMed ID: 7977157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Formula alpha-linolenic (18:3(n - 3)) and linoleic (18:2(n - 6)) acid influence neonatal piglet liver and brain saturated fatty acids, as well as docosahexaenoic acid (22:6(n - 3)).
    Arbuckle LD; Rioux FM; MacKinnon MJ; Innis SM
    Biochim Biophys Acta; 1992 May; 1125(3):262-7. PubMed ID: 1350737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic effects of dietary stearic acid in mice: changes in the fatty acid composition of triglycerides and phospholipids in various tissues.
    Bonanome A; Bennett M; Grundy SM
    Atherosclerosis; 1992 Jun; 94(2-3):119-27. PubMed ID: 1632865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interrelation of fatty acid composition in adipose tissue, serum, and liver of dairy cows during the development of fatty liver postpartum.
    Rukkwamsuk T; Geelen MJ; Kruip TA; Wensing T
    J Dairy Sci; 2000 Jan; 83(1):52-9. PubMed ID: 10659963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporation and metabolism of fatty acids by cultured dissociated cells from rat cerebrum.
    Yavin E; Menkes JH
    Lipids; 1974 Apr; 9(4):248-53. PubMed ID: 4833434
    [No Abstract]   [Full Text] [Related]  

  • 17. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes.
    Sahin N; Akoh CC; Karaali A
    J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Utilization of uniformly labeled 13C-polyunsaturated fatty acids in the synthesis of long-chain fatty acids and cholesterol accumulating in the neonatal rat brain.
    Cunnane SC; Williams SC; Bell JD; Brookes S; Craig K; Iles RA; Crawford MA
    J Neurochem; 1994 Jun; 62(6):2429-36. PubMed ID: 8189246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of dehydroepiandrosterone on oleic acid accumulation in rat liver.
    Imai K; Kudo N; Koyama M; Kawashima Y
    Biochem Pharmacol; 2003 May; 65(10):1583-91. PubMed ID: 12754094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of varying the type of saturated fatty acid in the rat diet upon serum lipid levels and spleen lymphocyte functions.
    Jeffery NM; Sanderson P; Newsholme EA; Calder PC
    Biochim Biophys Acta; 1997 Apr; 1345(3):223-36. PubMed ID: 9150243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.