BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 9489781)

  • 1. Early expression of Osteopontin in the chick is restricted to rhombomeres 5 and 6 and to a subpopulation of neural crest cells that arise from these segments.
    Thayer JM; Schoenwolf GC
    Anat Rec; 1998 Feb; 250(2):199-209. PubMed ID: 9489781
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conservation and diversity in the cis-regulatory networks that integrate information controlling expression of Hoxa2 in hindbrain and cranial neural crest cells in vertebrates.
    Tümpel S; Maconochie M; Wiedemann LM; Krumlauf R
    Dev Biol; 2002 Jun; 246(1):45-56. PubMed ID: 12027433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed cell death and the morphogenesis of the hindbrain roof plate in the chick embryo.
    Lawson A; Schoenwolf GC; England MA; Addai FK; Ahima RS
    Anat Embryol (Berl); 1999 Nov; 200(5):509-19. PubMed ID: 10526019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signalling between the hindbrain and paraxial tissues dictates neural crest migration pathways.
    Trainor PA; Sobieszczuk D; Wilkinson D; Krumlauf R
    Development; 2002 Jan; 129(2):433-42. PubMed ID: 11807035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Even-numbered rhombomeres control the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the chick hindbrain.
    Graham A; Heyman I; Lumsden A
    Development; 1993 Sep; 119(1):233-45. PubMed ID: 8275859
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternating patterns of cell surface properties and neural crest cell migration during segmentation of the chick hindbrain.
    Lumsden A; Guthrie S
    Dev Suppl; 1991; Suppl 2():9-15. PubMed ID: 1842360
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A paraxial exclusion zone creates patterned cranial neural crest cell outgrowth adjacent to rhombomeres 3 and 5.
    Farlie PG; Kerr R; Thomas P; Symes T; Minichiello J; Hearn CJ; Newgreen D
    Dev Biol; 1999 Sep; 213(1):70-84. PubMed ID: 10452847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanisms of pattern formation in the vertebrate hindbrain.
    Nieto MA; Bradley LC; Hunt P; Das Gupta R; Krumlauf R; Wilkinson DG
    Ciba Found Symp; 1992; 165():92-102; discussion 102-7. PubMed ID: 1355422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Restricting Bmp-4 mediated apoptosis in hindbrain neural crest.
    Smith A; Graham A
    Dev Dyn; 2001 Mar; 220(3):276-83. PubMed ID: 11241835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening from a subtracted embryonic chick hindbrain cDNA library: identification of genes expressed during hindbrain, midbrain and cranial neural crest development.
    Christiansen JH; Coles EG; Robinson V; Pasini A; Wilkinson DG
    Mech Dev; 2001 Apr; 102(1-2):119-33. PubMed ID: 11287186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhombomere transplantation repatterns the segmental organization of cranial nerves and reveals cell-autonomous expression of a homeodomain protein.
    Kuratani SC; Eichele G
    Development; 1993 Jan; 117(1):105-17. PubMed ID: 7900983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The signalling molecule BMP4 mediates apoptosis in the rhombencephalic neural crest.
    Graham A; Francis-West P; Brickell P; Lumsden A
    Nature; 1994 Dec; 372(6507):684-6. PubMed ID: 7990961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationship between spatially restricted Krox-20 gene expression in branchial neural crest and segmentation in the chick embryo hindbrain.
    Nieto MA; Sechrist J; Wilkinson DG; Bronner-Fraser M
    EMBO J; 1995 Apr; 14(8):1697-710. PubMed ID: 7537662
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A homeo domain protein reveals the metameric nature of the developing chick hindbrain.
    Sundin OH; Eichele G
    Genes Dev; 1990 Aug; 4(8):1267-76. PubMed ID: 1977659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Krox20 hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements.
    Chomette D; Frain M; Cereghini S; Charnay P; Ghislain J
    Development; 2006 Apr; 133(7):1253-62. PubMed ID: 16495311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick.
    Osborne NJ; Begbie J; Chilton JK; Schmidt H; Eickholt BJ
    Dev Dyn; 2005 Apr; 232(4):939-49. PubMed ID: 15729704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches.
    Kulesa PM; Fraser SE
    Development; 2000 Mar; 127(6):1161-72. PubMed ID: 10683170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of Snail family members highlights their ability to promote chick neural crest formation.
    del Barrio MG; Nieto MA
    Development; 2002 Apr; 129(7):1583-93. PubMed ID: 11923196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cadherin-6 expression transiently delineates specific rhombomeres, other neural tube subdivisions, and neural crest subpopulations in mouse embryos.
    Inoue T; Chisaka O; Matsunami H; Takeichi M
    Dev Biol; 1997 Mar; 183(2):183-94. PubMed ID: 9126293
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of the vertebrate hindbrain: a time-lapse analysis.
    Kulesa PM; Fraser SE
    Int J Dev Biol; 1998; 42(3):385-92. PubMed ID: 9654023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.