BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 9490618)

  • 1. [DNA polymerase mediated amplification of DNA fragments using primers with mismatches in the 3'-region].
    Ignatov KB; Kramarov VM; Uznadze OL; Miroshnikov AI
    Bioorg Khim; 1997 Oct; 23(10):817-22. PubMed ID: 9490618
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primer/template-independent synthesis of poly d(A-T) by Taq polymerase.
    Hanaki K; Odawara T; Muramatsu T; Kuchino Y; Masuda M; Yamamoto K; Nozaki C; Mizuno K; Yoshikura H
    Biochem Biophys Res Commun; 1997 Sep; 238(1):113-8. PubMed ID: 9299462
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recognition of sequence-directed DNA structure by the Klenow fragment of DNA polymerase I.
    Carver TE; Millar DP
    Biochemistry; 1998 Feb; 37(7):1898-904. PubMed ID: 9485315
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A new thermostable DNA polymerase mixture for efficient amplification of long DNA fragments.
    Davalieva KG; Efremov GD
    Prikl Biokhim Mikrobiol; 2010; 46(2):248-52. PubMed ID: 20391772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polymerization behavior of Klenow fragment and Taq DNA polymerase in short primer extension reactions.
    Zhao G; Guan Y
    Acta Biochim Biophys Sin (Shanghai); 2010 Oct; 42(10):722-8. PubMed ID: 20829187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two different reactions involved in the primer/template-independent polymerization of dATP and dTTP by Taq DNA polymerase.
    Hanaki K; Odawara T; Nakajima N; Shimizu YK; Nozaki C; Mizuno K; Muramatsu T; Kuchino Y; Yoshikura H
    Biochem Biophys Res Commun; 1998 Mar; 244(1):210-9. PubMed ID: 9514904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of DNA polymerase I (Klenow fragment) with DNA substrates containing extrahelical bases: implications for proofreading of frameshift errors during DNA synthesis.
    Lam WC; Van der Schans EJ; Sowers LC; Millar DP
    Biochemistry; 1999 Mar; 38(9):2661-8. PubMed ID: 10052936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discrimination of primer 3'-nucleotide mismatch by taq DNA polymerase during polymerase chain reaction.
    Ayyadevara S; Thaden JJ; Shmookler Reis RJ
    Anal Biochem; 2000 Aug; 284(1):11-8. PubMed ID: 10933850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A distinctive property of Tth DNA polymerase: enzymatic amplification in the presence of phenol.
    Katcher HL; Schwartz I
    Biotechniques; 1994 Jan; 16(1):84-92. PubMed ID: 8136148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyamide nucleic acid-DNA chimera lacking the phosphate backbone are novel primers for polymerase reaction catalyzed by DNA polymerases.
    Misra HS; Pandey PK; Modak MJ; Vinayak R; Pandey VN
    Biochemistry; 1998 Feb; 37(7):1917-25. PubMed ID: 9485318
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Amplification of the phage lambda DNA sequence by polymerase chain reaction using thermostable DNA polymerase].
    Glukhov AI; Trofimova ME; Gordeev SA; Grebennikova TV; Vinogradov SV; Kiselev VI; Kramarov VM
    Mol Biol (Mosk); 1991; 25(6):1602-10. PubMed ID: 1667541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNAse A treatment of Taq and Tth DNA polymerases eliminates primer/template-independent poly(dA-dT) synthesis.
    Hanaki K; Nishihara T; Odawara T; Nakajima N; Yamamoto K; Yoshikura H
    Biotechniques; 2001 Oct; 31(4):734, 736, 738. PubMed ID: 11680699
    [No Abstract]   [Full Text] [Related]  

  • 13. Transcription and reverse transcription of artificial nucleic acids involving backbone modification by template-directed DNA polymerase reactions.
    Kuwahara M; Takeshima H; Nagashima J; Minezaki S; Ozaki H; Sawai H
    Bioorg Med Chem; 2009 Jun; 17(11):3782-8. PubMed ID: 19427792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The implications of using mutagenic primers in combination with Taq polymerase having proofreading activity.
    Papadopoulou E; Metaxa-Mariatou V; Hatzaki A; Hatzis T; Nasioulas G
    Biologicals; 2004 Jun; 32(2):84-7. PubMed ID: 15454186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer.
    Lin Y; Jayasena SD
    J Mol Biol; 1997 Aug; 271(1):100-11. PubMed ID: 9300057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Doublex" fluorescent DNA sequencing: two independent sequences obtained simultaneously in one reaction with internal labeling and unlabeled primers.
    Wiemann S; Stegemann J; Zimmermann J; Voss H; Benes V; Ansorge W
    Anal Biochem; 1996 Feb; 234(2):166-74. PubMed ID: 8714594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding.
    Bailey MF; Van der Schans EJ; Millar DP
    Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Very efficient template/primer-independent DNA synthesis by thermophilic DNA polymerase in the presence of a thermophilic restriction endonuclease.
    Liang X; Jensen K; Frank-Kamenetskii MD
    Biochemistry; 2004 Oct; 43(42):13459-66. PubMed ID: 15491153
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of DNA minor groove interactions by exonuclease-deficient Klenow polymerase inhibits O6-methylguanine and abasic site translesion synthesis.
    Gestl EE; Eckert KA
    Biochemistry; 2005 May; 44(18):7059-68. PubMed ID: 15865450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of DNA damage and repair in tissues of gamma-irradiated animals using the polymerase chain reaction.
    Ploskonosova II; Baranov VI; Gaziev AI
    Biochemistry (Mosc); 1999 Nov; 64(11):1320-5. PubMed ID: 10611540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.