These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 9490755)

  • 21. Correlation of spermine levels with ovary senescence and with fruit set and development inPisum sativum L.
    Carbonell J; Navarro JL
    Planta; 1989 Dec; 178(4):482-7. PubMed ID: 24213045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Opposite patterns in the annual distribution and time-course of endogenous abscisic acid and indole-3-acetic acid in relation to the periodicity of cambial activity in Eucommia ulmoides Oliv.
    Mwange KN; Hou HW; Wang YQ; He XQ; Cui KM
    J Exp Bot; 2005 Mar; 56(413):1017-28. PubMed ID: 15710633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shoot-derived abscisic acid promotes root growth.
    McAdam SA; Brodribb TJ; Ross JJ
    Plant Cell Environ; 2016 Mar; 39(3):652-9. PubMed ID: 26514625
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Expression of the le Mutation in Young Ovaries of Pisum sativum and Its Effect on Fruit Development.
    Santes CM; Hedden P; Sponsel VM; Reid JB; Garcia-Martinez JL
    Plant Physiol; 1993 Mar; 101(3):759-764. PubMed ID: 12231727
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris.
    Wang Q; Little CH; Odén PC
    Tree Physiol; 1997 Nov; 17(11):715-21. PubMed ID: 14759896
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the Growth Retardant 3,5-Dioxo-4-butyryl-cyclohexane Carboxylic Acid Ethyl Ester, an Acylcyclohexanedione Compound, on Fruit Growth and Gibberellin Content of Pollinated and Unpollinated Ovaries in Pea.
    Santes CM; Garcia-Martinez JL
    Plant Physiol; 1995 Jun; 108(2):517-523. PubMed ID: 12228489
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Magnitude and Kinetics of Stem Elongation Induced by Exogenous Indole-3-Acetic Acid in Intact Light-Grown Pea Seedlings.
    Yang T; Law DM; Davies PJ
    Plant Physiol; 1993 Jul; 102(3):717-724. PubMed ID: 12231860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ribulose-1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L.
    Carbonell J; García-Martínez JL
    Planta; 1985 Jul; 164(4):534-9. PubMed ID: 24248229
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Indole-3-acetic acid and auxin herbicides up-regulate 9-cis-epoxycarotenoid dioxygenase gene expression and abscisic acid accumulation in cleavers (Galium aparine): interaction with ethylene.
    Kraft M; Kuglitsch R; Kwiatkowski J; Frank M; Grossmann K
    J Exp Bot; 2007; 58(6):1497-503. PubMed ID: 17317672
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of pod removal on the transport and accumulation of abscisic Acid and indole-3-acetic Acid in soybean leaves.
    Hein MB; Brenner ML; Brun WA
    Plant Physiol; 1984 Dec; 76(4):955-8. PubMed ID: 16663979
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport and accumulation rates of abscisic acid and aldehyde oxidase activity in Pisum sativum L. in response to suboptimal growth conditions.
    Zdunek E; Lips SH
    J Exp Bot; 2001 Jun; 52(359):1269-76. PubMed ID: 11432945
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: inhibition of polar auxin transport in intact plants and stem segments.
    Morris DA; Johnson CF
    Planta; 1987 Nov; 172(3):408-16. PubMed ID: 24225926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Branching Mutant rms-2 in Pisum sativum (Grafting Studies and Endogenous Indole-3-Acetic Acid Levels).
    Beveridge CA; Ross JJ; Murfet IC
    Plant Physiol; 1994 Mar; 104(3):953-959. PubMed ID: 12232140
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Changes in the contents of abscisic acid, indoleacetic acid, and chloroplast pigments in pea seedlings treated with gibberellic acid].
    Tietz A; Dörffling K
    Planta; 1969 Jun; 85(2):118-25. PubMed ID: 24515584
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of Internode Length in Pisum sativum (Further Evidence for the Involvement of Indole-3-Acetic Acid).
    McKay MJ; Ross JJ; Lawrence NL; Cramp RE; Beveridge CA; Reid JB
    Plant Physiol; 1994 Dec; 106(4):1521-1526. PubMed ID: 12232426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Auxin transport in intact pea seedlings (Pisum sativum L.): The inhibition of transport by 2,3,5-triiodobenzoic acid.
    Morris DA; Kadir GO; Barry AJ
    Planta; 1973 Jun; 110(2):173-82. PubMed ID: 24474345
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of bisphenol A, an environmental endocrine disruptor, on the endogenous hormones of plants.
    Wang S; Wang L; Hua W; Zhou M; Wang Q; Zhou Q; Huang X
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17653-62. PubMed ID: 26150296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato.
    Fos M; Proaño K; Nuez F; García-Martínez JL
    Physiol Plant; 2001 Apr; 111(4):545-550. PubMed ID: 11299021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Indole acetic acid distribution coincides with vascular differentiation pattern during Arabidopsis leaf ontogeny.
    Avsian-Kretchmer O; Cheng JC; Chen L; Moctezuma E; Sung ZR
    Plant Physiol; 2002 Sep; 130(1):199-209. PubMed ID: 12226500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of auxin transport in pea (Pisum sativum L.) by phenylacetic acid: effects on the components of transmembrane transport of indol-3yl-acetic acid.
    Johnson CF; Morris DA
    Planta; 1987 Nov; 172(3):400-7. PubMed ID: 24225925
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.