These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 9490777)
1. Influence of Precursor Availability on Alkaloid Accumulation by Transgenic Cell Line of Catharanthus roseus. Whitmer S; Canel C; Hallard D; Gonçalves C; Verpoorte R Plant Physiol; 1998 Feb; 116(2):853-7. PubMed ID: 9490777 [TBL] [Abstract][Full Text] [Related]
2. Effect of precursor feeding on alkaloid accumulation by a tryptophan decarboxylase over-expressing transgenic cell line T22 of Catharanthus roseus. Whitmer S; van der Heijden R; Verpoorte R J Biotechnol; 2002 Jun; 96(2):193-203. PubMed ID: 12039535 [TBL] [Abstract][Full Text] [Related]
3. Suspension cultured transgenic cells of Nicotiana tabacum expressing tryptophan decarboxylase and strictosidine synthase cDNAs from Catharanthus roseus produce strictosidine upon secologanin feeding. Hallard D; van der Heijden R; Verpoorte R; Cardoso MIL; Pasquali G; Memelink J; Hoge JHC Plant Cell Rep; 1997 Nov; 17(1):50-54. PubMed ID: 30732419 [TBL] [Abstract][Full Text] [Related]
4. Assessing the limitations to terpenoid indole alkaloid biosynthesis in Catharanthus roseus hairy root cultures through gene expression profiling and precursor feeding. Goklany S; Loring RH; Glick J; Lee-Parsons CW Biotechnol Prog; 2009; 25(5):1289-96. PubMed ID: 19722248 [TBL] [Abstract][Full Text] [Related]
5. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots. Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI J Biotechnol; 2006 Mar; 122(1):28-38. PubMed ID: 16188339 [TBL] [Abstract][Full Text] [Related]
6. Secondary metabolite biosynthesis in cultured cells of Catharanthus roseus (L.) G. Don immobilized by adhesion to glass fibres. Facchini PJ; DiCosmo F Appl Microbiol Biotechnol; 1991 Jun; 35(3):382-92. PubMed ID: 1367318 [TBL] [Abstract][Full Text] [Related]
7. Effect of terpenoid precursor feeding and elicitation on formation of indole alkaloids in cell suspension cultures of Catharanthus roseus. Moreno PR; van der Heijden R; Verpoorte R Plant Cell Rep; 1993 Oct; 12(12):702-5. PubMed ID: 24201968 [TBL] [Abstract][Full Text] [Related]
8. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Canel C; Lopes-Cardoso MI; Whitmer S; van der Fits L; Pasquali G; van der Heijden R; Hoge JH; Verpoorte R Planta; 1998 Jul; 205(3):414-9. PubMed ID: 9640666 [TBL] [Abstract][Full Text] [Related]
9. Overexpression of tryptophan decarboxylase and strictosidine synthase enhanced terpenoid indole alkaloid pathway activity and antineoplastic vinblastine biosynthesis in Catharanthus roseus. Sharma A; Verma P; Mathur A; Mathur AK Protoplasma; 2018 Sep; 255(5):1281-1294. PubMed ID: 29508069 [TBL] [Abstract][Full Text] [Related]
10. Genetic engineering approach using early Vinca alkaloid biosynthesis genes led to increased tryptamine and terpenoid indole alkaloids biosynthesis in differentiating cultures of Catharanthus roseus. Sharma A; Verma P; Mathur A; Mathur AK Protoplasma; 2018 Jan; 255(1):425-435. PubMed ID: 28808798 [TBL] [Abstract][Full Text] [Related]
11. Precursor feeding studies and molecular characterization of geraniol synthase establish the limiting role of geraniol in monoterpene indole alkaloid biosynthesis in Catharanthus roseus leaves. Kumar K; Kumar SR; Dwivedi V; Rai A; Shukla AK; Shanker K; Nagegowda DA Plant Sci; 2015 Oct; 239():56-66. PubMed ID: 26398791 [TBL] [Abstract][Full Text] [Related]
12. [Advance in biosynthesis of terpenoid indole alkaloids and its regulation in Catharanthus roseus]. Kuang XJ; Wang CX; Zou LQ; Zhu XX; Sun C Zhongguo Zhong Yao Za Zhi; 2016 Nov; 41(22):4129-4137. PubMed ID: 28933078 [TBL] [Abstract][Full Text] [Related]
13. Elicitor-mediated induction of tryptophan decarboxylase and strictosidine synthase activities in cell suspension cultures of Catharanthus roseus. Eilert U; De Luca V; Constabel F; Kurz WG Arch Biochem Biophys; 1987 May; 254(2):491-7. PubMed ID: 3579315 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Geerlings A; Redondo FJ; Contin A; Memelink J; van der Heijden R; Verpoorte R Appl Microbiol Biotechnol; 2001 Aug; 56(3-4):420-4. PubMed ID: 11549013 [TBL] [Abstract][Full Text] [Related]
15. Effects of terpenoid precursor feeding on Catharanthus roseus hairy roots over-expressing the alpha or the alpha and beta subunits of anthranilate synthase. Peebles CA; Hong SB; Gibson SI; Shanks JV; San KY Biotechnol Bioeng; 2006 Feb; 93(3):534-40. PubMed ID: 16240438 [TBL] [Abstract][Full Text] [Related]
17. Expression of enzymatically active and correctly targeted strictosidine synthase in transgenic tobacco plants. McKnight TD; Bergey DR; Burnett RJ; Nessler CL Planta; 1991 Sep; 185(2):148-52. PubMed ID: 24186336 [TBL] [Abstract][Full Text] [Related]
18. Proteome analysis of the medicinal plant Catharanthus roseus. Jacobs DI; Gaspari M; van der Greef J; van der Heijden R; Verpoorte R Planta; 2005 Jul; 221(5):690-704. PubMed ID: 15682277 [TBL] [Abstract][Full Text] [Related]
19. Endophytes enhance the production of root alkaloids ajmalicine and serpentine by modulating the terpenoid indole alkaloid pathway in Catharanthus roseus roots. Singh S; Pandey SS; Shanker K; Kalra A J Appl Microbiol; 2020 Apr; 128(4):1128-1142. PubMed ID: 31821696 [TBL] [Abstract][Full Text] [Related]
20. Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus. Pan YJ; Liu J; Guo XR; Zu YG; Tang ZH Protoplasma; 2015 May; 252(3):813-24. PubMed ID: 25344654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]