These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 9490926)

  • 1. [Regulation of calcium liberation in sarcoplasmic reticulum and heart muscle cells].
    Callewaert G; Sipido KR
    Verh K Acad Geneeskd Belg; 1997; 59(5):401-34. PubMed ID: 9490926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle.
    Szentesi P; Pignier C; Egger M; Kranias EG; Niggli E
    Circ Res; 2004 Oct; 95(8):807-13. PubMed ID: 15388639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Action potential prolongation in cardiac myocytes of old rats is an adaptation to sustain youthful intracellular Ca2+ regulation.
    Janczewski AM; Spurgeon HA; Lakatta EG
    J Mol Cell Cardiol; 2002 Jun; 34(6):641-8. PubMed ID: 12054851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ca2+ stores regulate ryanodine receptor Ca2+ release channels via luminal and cytosolic Ca2+ sites.
    Laver DR
    Clin Exp Pharmacol Physiol; 2007 Sep; 34(9):889-96. PubMed ID: 17645636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations in early action potential repolarization causes localized failure of sarcoplasmic reticulum Ca2+ release.
    Harris DM; Mills GD; Chen X; Kubo H; Berretta RM; Votaw VS; Santana LF; Houser SR
    Circ Res; 2005 Mar; 96(5):543-50. PubMed ID: 15705962
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced sarcolemmal Ca2+ efflux reduces sarcoplasmic reticulum Ca2+ content and systolic Ca2+ in cardiac hypertrophy.
    Díaz ME; Graham HK; Trafford AW
    Cardiovasc Res; 2004 Jun; 62(3):538-47. PubMed ID: 15158146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
    Han C; Tavi P; Weckström M
    Biophys J; 2002 Mar; 82(3):1483-96. PubMed ID: 11867463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The voltage-sensitive release mechanism of excitation contraction coupling in rabbit cardiac muscle is explained by calcium-induced calcium release.
    Griffiths H; MacLeod KT
    J Gen Physiol; 2003 May; 121(5):353-73. PubMed ID: 12719483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenteric lymph from rats with thermal injury prolongs the action potential and increases Ca2+ transient in rat ventricular myocytes.
    Yatani A; Xu DZ; Kim SJ; Vatner SF; Deitch EA
    Shock; 2003 Nov; 20(5):458-64. PubMed ID: 14560111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histamine H1-receptor-mediated increase in the Ca2+ transient without a change in the Ca2+ current in electrically stimulated guinea-pig atrial myocytes.
    Yoshimoto K; Hattori Y; Houzen H; Kanno M; Yasuda K
    Br J Pharmacol; 1998 Aug; 124(8):1744-50. PubMed ID: 9756392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amount of calcium in the sarcoplasmic reticulum: influence on excitation-contraction coupling in heart muscle.
    Santana LF; Gómez AM; Kranias EG; Lederer WJ
    Heart Vessels; 1997; Suppl 12():44-9. PubMed ID: 9476542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of cyclopiazonic acid on membrane currents, contraction and intracellular calcium transients in frog heart.
    Badaoui A; Huchet-Cadiou C; Léoty C
    J Mol Cell Cardiol; 1995 Nov; 27(11):2495-505. PubMed ID: 8596200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developmental cardiac electrophysiology recent advances in cellular physiology.
    Wetzel GT; Klitzner TS
    Cardiovasc Res; 1996 Feb; 31 Spec No():E52-60. PubMed ID: 8681346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rest-dependence of twitch amplitude and sarcoplasmic reticulum calcium content in the developing rat myocardium.
    Ferraz SA; Bassani JW; Bassani RA
    J Mol Cell Cardiol; 2001 Apr; 33(4):711-22. PubMed ID: 11273724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellular basis of abnormal calcium transients of failing human ventricular myocytes.
    Piacentino V; Weber CR; Chen X; Weisser-Thomas J; Margulies KB; Bers DM; Houser SR
    Circ Res; 2003 Apr; 92(6):651-8. PubMed ID: 12600875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of FK506 on [Ca2+]i differ in mouse and rabbit ventricular myocytes.
    Su Z; Sugishita K; Li F; Ritter M; Barry WH
    J Pharmacol Exp Ther; 2003 Jan; 304(1):334-41. PubMed ID: 12490609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frequency-dependent increase in cardiac Ca2+ current is due to reduced Ca2+ release by the sarcoplasmic reticulum.
    Delgado C; Artiles A; Gómez AM; Vassort G
    J Mol Cell Cardiol; 1999 Oct; 31(10):1783-93. PubMed ID: 10525417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The source of contracticle calcium in guinea-pig cardiac myocytes treated with thapsigargin.
    Janiak R; Lewartowski B
    J Physiol Pharmacol; 1996 Sep; 47(3):411-23. PubMed ID: 8877897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of L-type calcium current kinetics by sarcoplasmic reticulum calcium release in ferret isolated right ventricular myocytes.
    Qu Y; Campbell DL
    Can J Cardiol; 1998 Feb; 14(2):263-72. PubMed ID: 9520864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.