BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 9491)

  • 21. Chemical communication between vagal afferent somata in nodose Ganglia of the rat and the Guinea pig in vitro.
    Oh EJ; Weinreich D
    J Neurophysiol; 2002 Jun; 87(6):2801-7. PubMed ID: 12037182
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrophysiological identification of glucose-sensing neurons in rat nodose ganglia.
    Grabauskas G; Song I; Zhou S; Owyang C
    J Physiol; 2010 Feb; 588(Pt 4):617-32. PubMed ID: 20008464
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices.
    Gallego R; Eyzaguirre C
    J Neurophysiol; 1978 Sep; 41(5):1217-32. PubMed ID: 702193
    [No Abstract]   [Full Text] [Related]  

  • 24. Conditional spike backpropagation generates burst discharge in a sensory neuron.
    Lemon N; Turner RW
    J Neurophysiol; 2000 Sep; 84(3):1519-30. PubMed ID: 10980024
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological evidence for the reconstitution of chemosensory units in co-cultures of carotid body and nodose ganglion neurons.
    Alcayaga J; Eyzaguirre C
    Brain Res; 1990 Nov; 534(1-2):324-8. PubMed ID: 2073595
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vagotomy decreases excitability in primary vagal afferent somata.
    Lancaster E; Oh EJ; Weinreich D
    J Neurophysiol; 2001 Jan; 85(1):247-53. PubMed ID: 11152724
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain stem projections of sensory and motor components of the vagus complex in the cat: I. The cervical vagus and nodose ganglion.
    Kalia M; Mesulam MM
    J Comp Neurol; 1980 Sep; 193(2):435-65. PubMed ID: 7440777
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanisms for signal transformation in lemniscal auditory thalamus.
    Tennigkeit F; Schwarz DW; Puil E
    J Neurophysiol; 1996 Dec; 76(6):3597-608. PubMed ID: 8985860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intracellular study of electrophysiological features of primate spinothalamic tract neurons and their responses to afferent inputs.
    Zhang DX; Owens CM; Willis WD
    J Neurophysiol; 1991 Jun; 65(6):1554-66. PubMed ID: 1875262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electroresponsive properties and membrane potential trajectories of three types of inspiratory neurons in the newborn mouse brain stem in vitro.
    Rekling JC; Champagnat J; Denavit-Saubié M
    J Neurophysiol; 1996 Feb; 75(2):795-810. PubMed ID: 8714653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Opiate effects on rabbit vagus nerve: electrophysiology and radioligand binding.
    Shefner SA; North RA; Zukin RS
    Brain Res; 1981 Sep; 221(1):109-16. PubMed ID: 6268250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Subtypes of vagal afferent C-fibres in guinea-pig lungs.
    Undem BJ; Chuaychoo B; Lee MG; Weinreich D; Myers AC; Kollarik M
    J Physiol; 2004 May; 556(Pt 3):905-17. PubMed ID: 14978204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contribution of potassium conductances to a time-dependent transition in electrical properties of a cockroach motoneuron soma.
    Mills JD; Pitman RM
    J Neurophysiol; 1999 May; 81(5):2253-66. PubMed ID: 10322064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phenotypic characterization of gastric sensory neurons in mice.
    Bielefeldt K; Zhong F; Koerber HR; Davis BM
    Am J Physiol Gastrointest Liver Physiol; 2006 Nov; 291(5):G987-97. PubMed ID: 16728726
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiological properties of rat nodose ganglion neurons co-transplanted with carotid bodies into the chick chorioallantoic membrane.
    Eugenín J; Eyzaguirre C
    Biol Res; 2005; 38(4):329-34. PubMed ID: 16579513
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of 5-hydroxytryptamine on vagal C-fiber subtypes in guinea pig lungs.
    Chuaychoo B; Lee MG; Kollarik M; Undem BJ
    Pulm Pharmacol Ther; 2005; 18(4):269-76. PubMed ID: 15777609
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Response to CO2 of neurons in the rostral ventral medulla in vitro.
    Richerson GB
    J Neurophysiol; 1995 Mar; 73(3):933-44. PubMed ID: 7608778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In vitro brain slice studies of the rat's dorsal nucleus of the lateral lemniscus. I. Membrane and synaptic response properties.
    Wu SH; Kelly JB
    J Neurophysiol; 1995 Feb; 73(2):780-93. PubMed ID: 7760134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bursting and oscillating neurons of the cat basolateral amygdaloid complex in vivo: electrophysiological properties and morphological features.
    Paré D; Pape HC; Dong J
    J Neurophysiol; 1995 Sep; 74(3):1179-91. PubMed ID: 7500142
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spinal nerve injury enhances subthreshold membrane potential oscillations in DRG neurons: relation to neuropathic pain.
    Liu CN; Michaelis M; Amir R; Devor M
    J Neurophysiol; 2000 Jul; 84(1):205-15. PubMed ID: 10899197
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.