These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 9491759)

  • 1. Interpretation of the osmotic behavior of sickle cell hemoglobin solutions: different interactions among monomers and polymers.
    Han J; Herzfeld J
    Biopolymers; 1998 Apr; 45(4):299-306. PubMed ID: 9491759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The entropically favored osmotic "compression" of sickle cell hemoglobin gels.
    Chik JK; Parsegian VA
    Biopolymers; 2001 Aug; 59(2):120-4. PubMed ID: 11373725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crowding and the polymerization of sickle hemoglobin.
    Ferrone FA; Rotter MA
    J Mol Recognit; 2004; 17(5):497-504. PubMed ID: 15362110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the hemoglobin concentration in deoxyhemoglobin S polymers and characterization of the polymer water compartment.
    Bookchin RM; Balazs T; Lew VL
    J Mol Biol; 1994 Nov; 244(1):100-9. PubMed ID: 7966313
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free heme in micromolar amounts enhances the attraction between sickle cell hemoglobin molecules.
    Pan W; Uzunova VV; Vekilov PG
    Biopolymers; 2009 Dec; 91(12):1108-16. PubMed ID: 19322821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postulated effects on water structure of some salts and protein denaturants as inferred from measurements of viscosity B coefficients: example of HbS polymerization.
    Banerjee R; Frilley B; Guissani A
    Indian J Biochem Biophys; 1999 Apr; 36(2):107-17. PubMed ID: 10549170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of beta87 Thr in the beta6 Val acceptor site during deoxy Hb S polymerization.
    Reddy LR; Reddy KS; Surrey S; Adachi K
    Biochemistry; 1997 Dec; 36(50):15992-8. PubMed ID: 9398334
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simple model of sickle hemogloblin.
    Shiryayev A; Li X; Gunton JD
    J Chem Phys; 2006 Jul; 125(2):24902. PubMed ID: 16848606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of T-R conformational change on sickle-cell hemoglobin interactions and aggregation.
    Vaiana SM; Rotter MA; Emanuele A; Ferrone FA; Palma-Vittorelli MB
    Proteins; 2005 Feb; 58(2):426-38. PubMed ID: 15573374
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymerization of deoxy-sickle cell hemoglobin in high-phosphate buffer.
    Wang Z; Kishchenko G; Chen Y; Josephs R
    J Struct Biol; 2000 Sep; 131(3):197-209. PubMed ID: 11052892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyses of thermodynamic data for concentrated hemoglobin solutions using scaled particle theory: implications for a simple two-state model of water in thermodynamic analyses of crowding in vitro and in vivo.
    Guttman HJ; Anderson CF; Record MT
    Biophys J; 1995 Mar; 68(3):835-46. PubMed ID: 7756551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of pH on instability and aggregation of sickle hemoglobin solutions.
    Manno M; San Biagio PL; Palma MU
    Proteins; 2004 Apr; 55(1):169-76. PubMed ID: 14997550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo polymerization of sickle-cell hemoglobin: a theoretical study.
    Makhijani VB; Cokelet GR
    Blood Cells; 1994; 20(1):169-83; discussion 184-90. PubMed ID: 7994059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissecting the energies that stabilize sickle hemoglobin polymers.
    Wang Y; Ferrone FA
    Biophys J; 2013 Nov; 105(9):2149-56. PubMed ID: 24209860
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The double nucleation model for sickle cell haemoglobin polymerization: full integration and comparison with experimental data.
    Medkour T; Ferrone F; Galactéros F; Hannaert P
    Acta Biotheor; 2008 Jun; 56(1-2):103-22. PubMed ID: 18247134
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regioselective covalent modification of hemoglobin in search of antisickling agents.
    Park S; Hayes BL; Marankan F; Mulhearn DC; Wanna L; Mesecar AD; Santarsiero BD; Johnson ME; Venton DL
    J Med Chem; 2003 Mar; 46(6):936-53. PubMed ID: 12620071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable polymerization of sickle hemoglobin in droplets.
    Aprelev A; Weng W; Zakharov M; Rotter M; Yosmanovich D; Kwong S; Briehl RW; Ferrone FA
    J Mol Biol; 2007 Jun; 369(5):1170-4. PubMed ID: 17493634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic studies of polymerization of deoxygenated sickle cell hemoglobin.
    Magdoff-Fairchild B; Poillon WN; Li T; Bertles JF
    Proc Natl Acad Sci U S A; 1976 Apr; 73(4):990-4. PubMed ID: 4799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polymerization of sickle hemoglobin in solutions and cells.
    Ferrone FA
    Experientia; 1993 Feb; 49(2):110-7. PubMed ID: 8440349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the mechanisms of slow religation to sickle cell hemoglobin polymers following laser photolysis.
    Shapiro DB; Esquerra RM; Goldbeck RA; Ballas SK; Mohandas N; Kliger DS
    J Mol Biol; 1996 Jun; 259(5):947-56. PubMed ID: 8683597
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.